Text Feedback Classification using Machine Learning Techniques

Dr. E.Elakiya, Dr. S. Deepa Nivethika, Dr. R. Kanagaraj, Dr.R.Sujithra, Tejus Paturu, Student
{"title":"Text Feedback Classification using Machine Learning Techniques","authors":"Dr. E.Elakiya, Dr. S. Deepa Nivethika, Dr. R. Kanagaraj, Dr.R.Sujithra, Tejus Paturu, Student","doi":"10.1109/ICECAA58104.2023.10212398","DOIUrl":null,"url":null,"abstract":"The popularity of online shopping has grown worldwide, making it an integral part of many people's lives. As customers are free to express their emotions online, online sales have become a significant source of revenue. This enables obtaining honest feedback for various products, helping to understand not only what is popular but also the overall consensus. To make sense of the large amounts of product feedback and gauge the public's response, it is important to understand the widely held sentiments. Machine learning models provide a solution to extract feedback from text. Random Forest classifier produces the highest accuracy of 88 percentage.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"93 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The popularity of online shopping has grown worldwide, making it an integral part of many people's lives. As customers are free to express their emotions online, online sales have become a significant source of revenue. This enables obtaining honest feedback for various products, helping to understand not only what is popular but also the overall consensus. To make sense of the large amounts of product feedback and gauge the public's response, it is important to understand the widely held sentiments. Machine learning models provide a solution to extract feedback from text. Random Forest classifier produces the highest accuracy of 88 percentage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习技术的文本反馈分类
网上购物在全球范围内越来越受欢迎,使其成为许多人生活中不可或缺的一部分。由于顾客可以在网上自由表达自己的情感,网上销售已经成为一个重要的收入来源。这样可以获得各种产品的真实反馈,不仅有助于了解流行产品,还有助于了解总体共识。为了理解大量的产品反馈并衡量公众的反应,理解广泛持有的情绪是很重要的。机器学习模型提供了从文本中提取反馈的解决方案。随机森林分类器的准确率最高,达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1