Personalized Recommendation Method Based on Web Log Mining

Lin Yongqin, Xu Budong
{"title":"Personalized Recommendation Method Based on Web Log Mining","authors":"Lin Yongqin, Xu Budong","doi":"10.1109/ICSGEA.2018.00109","DOIUrl":null,"url":null,"abstract":"As Web log mining is belonged to one of major technologies and tools to discover user's interest, in this paper, we propose a novel personalized recommendation method based on Web log mining. The proposed personalized recommendation system contains offline and online module. We consider three types of Web log files in this paper, include: 1) Sever log, 2) Error log, and 3) Cookie log. In addition, we analyze the internal structure of the Web log file. The main innovation of this paper is to introduce collaborative filtering in personalized recommendation. Particularly, we assume that users with similar rating behaviors are possible to have similar interest to an item. Next, we utilize the hierarchical clustering technology to cluster users according to their profiles. Finally, experimental results demonstrate that the proposed algorithm is able to achieve higher personalized recommendation results and lower calculation time.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As Web log mining is belonged to one of major technologies and tools to discover user's interest, in this paper, we propose a novel personalized recommendation method based on Web log mining. The proposed personalized recommendation system contains offline and online module. We consider three types of Web log files in this paper, include: 1) Sever log, 2) Error log, and 3) Cookie log. In addition, we analyze the internal structure of the Web log file. The main innovation of this paper is to introduce collaborative filtering in personalized recommendation. Particularly, we assume that users with similar rating behaviors are possible to have similar interest to an item. Next, we utilize the hierarchical clustering technology to cluster users according to their profiles. Finally, experimental results demonstrate that the proposed algorithm is able to achieve higher personalized recommendation results and lower calculation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Web日志挖掘的个性化推荐方法
由于Web日志挖掘属于发现用户兴趣的主要技术和工具之一,本文提出了一种基于Web日志挖掘的个性化推荐方法。本文提出的个性化推荐系统包含离线和在线两个模块。本文考虑了三种类型的Web日志文件,包括:1)服务器日志,2)错误日志,3)Cookie日志。此外,还分析了Web日志文件的内部结构。本文的主要创新点是在个性化推荐中引入协同过滤。特别是,我们假设具有相似评级行为的用户可能对某项商品有相似的兴趣。接下来,我们利用分层聚类技术根据用户的配置文件对用户进行聚类。最后,实验结果表明,该算法能够获得更高的个性化推荐结果和更短的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Medium-Long Term Power Load Forecasting Method Based on Load Decomposition and Big Data Technology Design and Implementation of Intelligent Kitchen System Based on Internet of Things Condition Maintenance on Secondary Equipment of Relay Protection in Substation Information Acquisition Structure of Internet of Things Based on Intelligent Gateway between ZigBee and Ethernet Preliminary Study on a Fiber Optic Extrinsic Fabry-Perot Interferometer Sensor of Acoustic Detection for Partial Discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1