Forecasting socioeconomic trends with cell phone records

V. Frías-Martínez, C. Soguero-Ruíz, E. Frías-Martínez, Malvina Josephidou
{"title":"Forecasting socioeconomic trends with cell phone records","authors":"V. Frías-Martínez, C. Soguero-Ruíz, E. Frías-Martínez, Malvina Josephidou","doi":"10.1145/2442882.2442902","DOIUrl":null,"url":null,"abstract":"National Statistical Institutes typically hire large numbers of enumerators to carry out periodic surveys regarding the socioeconomic status of a society. Such approach suffers from two drawbacks:(i) the survey process is expensive, especially for emerging countries that struggle with their budgets and (ii) the socioeconomic indicators are computed ex-post i.e., after socioeconomic changes have already happened. We propose the use of human behavioral patterns computed from calling records to predict future values of socioeconomic indicators. Our objective is to help institutions be able to forecast socioeconomic changes before they happen while reducing the number of surveys they need to compute. For that purpose, we explore a battery of different predictive approaches for time series and show that multivariate time-series models yield R-square values of up to 0.65 for certain socioeconomic indicators.","PeriodicalId":240004,"journal":{"name":"ACM DEV '13","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM DEV '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442882.2442902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

National Statistical Institutes typically hire large numbers of enumerators to carry out periodic surveys regarding the socioeconomic status of a society. Such approach suffers from two drawbacks:(i) the survey process is expensive, especially for emerging countries that struggle with their budgets and (ii) the socioeconomic indicators are computed ex-post i.e., after socioeconomic changes have already happened. We propose the use of human behavioral patterns computed from calling records to predict future values of socioeconomic indicators. Our objective is to help institutions be able to forecast socioeconomic changes before they happen while reducing the number of surveys they need to compute. For that purpose, we explore a battery of different predictive approaches for time series and show that multivariate time-series models yield R-square values of up to 0.65 for certain socioeconomic indicators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用手机记录预测社会经济趋势
国家统计机构通常雇用大量的统计员对一个社会的社会经济状况进行定期调查。这种方法有两个缺点:(i)调查过程很昂贵,特别是对于预算困难的新兴国家;(ii)社会经济指标是事后计算的,即在社会经济变化已经发生之后。我们建议使用从通话记录中计算的人类行为模式来预测未来社会经济指标的值。我们的目标是帮助机构能够在社会经济变化发生之前预测它们,同时减少它们需要计算的调查数量。为此,我们探索了一系列不同的时间序列预测方法,并表明多元时间序列模型对某些社会经济指标的r平方值高达0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a crowdsourcing community: how online social learning helps in poverty reduction MoSen: a middleware for mobile sensor programming Health education in rural communities with locally produced and locally relevant multimedia content A comparative study of voice and graphical user interfaces with respect to literacy levels A participatory video and audio platform for community interaction using DVDs and IVR systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1