Hi-D Maps: An Interactive Visualization Technique for Multi-Dimensional Categorical Data

Radi Muhammad Reza, Benjamin Watson
{"title":"Hi-D Maps: An Interactive Visualization Technique for Multi-Dimensional Categorical Data","authors":"Radi Muhammad Reza, Benjamin Watson","doi":"10.1109/VISUAL.2019.8933709","DOIUrl":null,"url":null,"abstract":"In this paper, we present Hi-D maps, a novel method for the visualization of multi-dimensional categorical data. Our work addresses the scarcity of techniques for visualizing a large number of data-dimensions in an effective and space-efficient manner. We have mapped the full data-space onto a 2D regular polygonal region. The polygon is cut hierarchically with lines parallel to a user-controlled, ordered sequence of sides, each representing a dimension. We have used multiple visual cues such as orientation, thickness, color, countable glyphs, and text to depict cross-dimensional information. We have added interactivity and hierarchical browsing to facilitate flexible exploration of the display: small areas can be scrutinized for details. Thus, our method is also easily extendable to visualize hierarchical information. Our glyph animations add an engaging aesthetic during interaction. Like many visualizations, Hi-D maps become less effective when a large number of dimensions stresses perceptual limits, but Hi-D maps may add clarity before those limits are reached.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present Hi-D maps, a novel method for the visualization of multi-dimensional categorical data. Our work addresses the scarcity of techniques for visualizing a large number of data-dimensions in an effective and space-efficient manner. We have mapped the full data-space onto a 2D regular polygonal region. The polygon is cut hierarchically with lines parallel to a user-controlled, ordered sequence of sides, each representing a dimension. We have used multiple visual cues such as orientation, thickness, color, countable glyphs, and text to depict cross-dimensional information. We have added interactivity and hierarchical browsing to facilitate flexible exploration of the display: small areas can be scrutinized for details. Thus, our method is also easily extendable to visualize hierarchical information. Our glyph animations add an engaging aesthetic during interaction. Like many visualizations, Hi-D maps become less effective when a large number of dimensions stresses perceptual limits, but Hi-D maps may add clarity before those limits are reached.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高清晰地图:多维分类数据的交互式可视化技术
在本文中,我们提出了一种用于多维分类数据可视化的新方法——高清晰地图。我们的工作解决了以有效和节省空间的方式可视化大量数据维度的技术的稀缺性。我们将整个数据空间映射到一个二维正多边形区域。多边形是用平行于用户控制的有序边序列的线分层切割的,每条线代表一个维度。我们使用了多种视觉线索,如方向、厚度、颜色、可计数的字形和文本来描绘跨维信息。我们增加了交互性和分层浏览,以方便灵活地探索显示:小区域可以仔细检查细节。因此,我们的方法也很容易扩展到可视化分层信息。我们的字形动画在交互过程中增加了迷人的美感。像许多可视化一样,当大量维度强调感知限制时,Hi-D地图变得不那么有效,但Hi-D地图可以在达到这些限制之前增加清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyPZ.js: Interaction Binding for Pan and Zoom Visualizations Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling Disentangled Representation of Data Distributions in Scatterplots RuleVis: Constructing Patterns and Rules for Rule-Based Models Interactive Bicluster Aggregation in Bipartite Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1