Integrated multivariate degradation prediction by RVM

P. Jiang, B. Guo, Shiqi Liu, Y. Xing
{"title":"Integrated multivariate degradation prediction by RVM","authors":"P. Jiang, B. Guo, Shiqi Liu, Y. Xing","doi":"10.1109/SYSENG.2017.8088323","DOIUrl":null,"url":null,"abstract":"Degradation prediction is important for safety related products to avoid failures. When the degradations of multiple parameters of a product is taken into account, traditional univariate degradation prediction method is not applicable, especially when the parameters are correlated. To cope with this problem, Mahalanobis distance is proposed, to combine multiple parameters into one unified index. Then healthy baselines of the product are determined based on the unified index. Finally, the method of Relevance Vector Machines is applied to predict the change trend of the unified index and find the failure time. A case study is presented to prove the validity of our proposed method.","PeriodicalId":354846,"journal":{"name":"2017 IEEE International Systems Engineering Symposium (ISSE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Systems Engineering Symposium (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSENG.2017.8088323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Degradation prediction is important for safety related products to avoid failures. When the degradations of multiple parameters of a product is taken into account, traditional univariate degradation prediction method is not applicable, especially when the parameters are correlated. To cope with this problem, Mahalanobis distance is proposed, to combine multiple parameters into one unified index. Then healthy baselines of the product are determined based on the unified index. Finally, the method of Relevance Vector Machines is applied to predict the change trend of the unified index and find the failure time. A case study is presented to prove the validity of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RVM的综合多元退化预测
降解预测是安全相关产品避免失效的重要手段。当考虑一个产品的多个参数的退化时,传统的单变量退化预测方法不适用,特别是当参数相互关联时。针对这一问题,提出了马氏距离,将多个参数合并为一个统一的指标。然后根据统一的指标确定产品的健康基线。最后,应用相关向量机方法预测统一指标的变化趋势,找出故障时间。最后通过一个实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP Docker container-based big data processing system in multiple clouds for everyone Development of hybrid aerial/terrestrial robot system and its automation Understanding evolution in systems of systems Reliability importance assessment using cost-based credible improvement potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1