Tomás Picornell, J. Flich, Carles Hernández, J. Duato
{"title":"DCFNoC","authors":"Tomás Picornell, J. Flich, Carles Hernández, J. Duato","doi":"10.1145/3316781.3317794","DOIUrl":null,"url":null,"abstract":"The adoption of many-cores in safety-critical systems requires real-time capable networks on chip (NoC). In this paper we propose a new time-predictable NoC design paradigm where contention within the network is eliminated. This new paradigm builds on the Channel Dependency Graph (CDG) and guarantees by design the absence of contention. Our delayed conflict-free NoC (DCFNoC) is able to naturally inject messages using a TDM period equal to the optimal theoretical bound and without the need of using a computationally demanding offline process. Results show that DCFNoC guarantees time predictability with very low implementation cost.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The adoption of many-cores in safety-critical systems requires real-time capable networks on chip (NoC). In this paper we propose a new time-predictable NoC design paradigm where contention within the network is eliminated. This new paradigm builds on the Channel Dependency Graph (CDG) and guarantees by design the absence of contention. Our delayed conflict-free NoC (DCFNoC) is able to naturally inject messages using a TDM period equal to the optimal theoretical bound and without the need of using a computationally demanding offline process. Results show that DCFNoC guarantees time predictability with very low implementation cost.