Autonomous Hyperspectral Target Detection with Quasi-Stationarity Violation at Background Boundaries

A. Schaum
{"title":"Autonomous Hyperspectral Target Detection with Quasi-Stationarity Violation at Background Boundaries","authors":"A. Schaum","doi":"10.1109/AIPR.2006.18","DOIUrl":null,"url":null,"abstract":"Operational real time hyperspectral reconnaissance systems adaptively estimate multivariate background statistics. Parameter values derived from these estimates feed autonomous onboard detection systems. However, inadequate adaptation occurs whenever an airborne sensor encounters a physical boundary between spectrally distinct regions. The transition area generates excessive false alarms, because standard detection algorithms rely on quasi- stationary models of background statistics. Here we describe a two-mode stochastic mixture model aimed at solving the boundary problem. It exploits deployed signal processing modules to solve a generalized eigenvalue problem, making a threshold test for targets computationally feasible.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Operational real time hyperspectral reconnaissance systems adaptively estimate multivariate background statistics. Parameter values derived from these estimates feed autonomous onboard detection systems. However, inadequate adaptation occurs whenever an airborne sensor encounters a physical boundary between spectrally distinct regions. The transition area generates excessive false alarms, because standard detection algorithms rely on quasi- stationary models of background statistics. Here we describe a two-mode stochastic mixture model aimed at solving the boundary problem. It exploits deployed signal processing modules to solve a generalized eigenvalue problem, making a threshold test for targets computationally feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景边界准平稳冲突的自主高光谱目标检测
作战实时高光谱侦察系统自适应估计多变量背景统计。由这些估计值得出的参数值提供给自主机载探测系统。然而,每当机载传感器遇到光谱不同区域之间的物理边界时,就会发生不适当的适应。由于标准的检测算法依赖于背景统计的准平稳模型,因此过渡区域会产生过多的虚警。本文描述了一种求解边界问题的双模随机混合模型。它利用部署的信号处理模块来解决广义特征值问题,使目标的阈值测试在计算上可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Algorithms for Tracking Multiple Objects in Video Rapid Automated Polygonal Image Decomposition Application Development Framework for the Rapid Integration of High Performance Image Processing Algorithms Automatic Alignment of Color Imagery onto 3D Laser Radar Data A Rate Distortion Method for Beamforming in RF Image Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1