Hybrid segmentation of depth images using a watershed and region merging based method for tree species recognition

A. Othmani, A. Piboule, L. Voon
{"title":"Hybrid segmentation of depth images using a watershed and region merging based method for tree species recognition","authors":"A. Othmani, A. Piboule, L. Voon","doi":"10.1109/IVMSPW.2013.6611901","DOIUrl":null,"url":null,"abstract":"Tree species recognition from Terrestrial Light Detection and Ranging (T-LiDAR) scanner data is essential for estimating forest inventory attributes in a mixed planting. In this paper, we propose a new method for individual tree species recognition based on the analysis of the 3D geometric texture of tree barks. Our method transforms the 3D point cloud of a 30 cm segment of the tree trunk into a depth image on which a hybrid segmentation method using watershed and region merging techniques is applied in order to reveal bark shape characteristics. Finally, shape and intensity features are calculated on the segmented depth image and used to classify five different tree species using a Random Forest (RF) classifier. Our method has been tested using two datasets acquired in two different French forests with different terrain characteristics. The accuracy and precision rates obtained for both datasets are over 89%.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tree species recognition from Terrestrial Light Detection and Ranging (T-LiDAR) scanner data is essential for estimating forest inventory attributes in a mixed planting. In this paper, we propose a new method for individual tree species recognition based on the analysis of the 3D geometric texture of tree barks. Our method transforms the 3D point cloud of a 30 cm segment of the tree trunk into a depth image on which a hybrid segmentation method using watershed and region merging techniques is applied in order to reveal bark shape characteristics. Finally, shape and intensity features are calculated on the segmented depth image and used to classify five different tree species using a Random Forest (RF) classifier. Our method has been tested using two datasets acquired in two different French forests with different terrain characteristics. The accuracy and precision rates obtained for both datasets are over 89%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流域和区域融合的深度图像混合分割方法用于树种识别
利用陆地光探测和测距(T-LiDAR)扫描仪数据识别树种是估算混合种植森林资源属性的关键。本文提出了一种基于树皮三维几何纹理分析的树种识别新方法。该方法将树干30 cm段的三维点云转换为深度图像,在深度图像上采用分水岭和区域合并混合分割方法来揭示树皮形状特征。最后,在分割深度图像上计算形状和强度特征,并使用随机森林(RF)分类器对五种不同的树种进行分类。我们的方法已经在两个不同地形特征的法国森林中使用两个数据集进行了测试。两个数据集的准确率和精密度都在89%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D activity measurement for stereoscopic video Flicker-free 3D shutter glasses by retardnace control of LC cell Multi-source inverse geometry CT(MS-IGCT) system: A new concept of 3D CT imaging Subjective assessment methodology for preference of experience in 3DTV Camera trajectory recovery for image-based city street modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1