Geostreaming in cloud

Seyed Jalal Kazemitabar, F. Kashani, D. McLeod
{"title":"Geostreaming in cloud","authors":"Seyed Jalal Kazemitabar, F. Kashani, D. McLeod","doi":"10.1145/2064959.2064962","DOIUrl":null,"url":null,"abstract":"In recent years, geospatial databases have been commercialized and widely exposed to mass users. Current exponential growth in data generation and querying rates for these data highlights the importance of efficient techniques for streaming. Traditional database technology, which operates on persistent and less dynamic data objects does not meet the requirements for efficient geospatial data streaming. Geostreaming, the intersection of data stream processing and geospatial querying, is an ongoing research focus in this area. In this paper, we describe why cloud is the most appropriate infrastructure in which to support geospatial stream data processing. First, we argue that cloud best fits the requirements of a large-scale geostreaming application. Second, we propose ElaStream, a general cloud-based streaming infrastructure that enables huge parallelism by means of the divide, conquer, and combine paradigm. Third, we examine key related work in the data streaming and (geo)spatial database fields, and describe the challenges ahead to build scalable cloud-based geostreaming applications.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2064959.2064962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In recent years, geospatial databases have been commercialized and widely exposed to mass users. Current exponential growth in data generation and querying rates for these data highlights the importance of efficient techniques for streaming. Traditional database technology, which operates on persistent and less dynamic data objects does not meet the requirements for efficient geospatial data streaming. Geostreaming, the intersection of data stream processing and geospatial querying, is an ongoing research focus in this area. In this paper, we describe why cloud is the most appropriate infrastructure in which to support geospatial stream data processing. First, we argue that cloud best fits the requirements of a large-scale geostreaming application. Second, we propose ElaStream, a general cloud-based streaming infrastructure that enables huge parallelism by means of the divide, conquer, and combine paradigm. Third, we examine key related work in the data streaming and (geo)spatial database fields, and describe the challenges ahead to build scalable cloud-based geostreaming applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云中的地质流
近年来,地理空间数据库已实现商业化,并广泛面向广大用户。当前数据生成和查询率的指数级增长突出了高效流技术的重要性。传统的数据库技术以持久性和低动态性的数据对象为基础,不能满足高效的地理空间数据流的要求。地理流是数据流处理和地理空间查询的交叉点,是该领域正在进行的研究热点。在本文中,我们描述了为什么云是支持地理空间流数据处理的最合适的基础设施。首先,我们认为云最适合大规模地理流应用程序的需求。其次,我们提出了ElaStream,这是一种通用的基于云的流基础设施,通过分而治之和结合范例实现了巨大的并行性。第三,我们研究了数据流和(地理)空间数据库领域的关键相关工作,并描述了构建可扩展的基于云的地理流应用所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1