OpenMeasure: Adaptive flow measurement & inference with online learning in SDN

Chang Liu, M. Malboubi, C. Chuah
{"title":"OpenMeasure: Adaptive flow measurement & inference with online learning in SDN","authors":"Chang Liu, M. Malboubi, C. Chuah","doi":"10.1109/INFCOMW.2016.7562044","DOIUrl":null,"url":null,"abstract":"Accurate and efficient network-wide traffic measurement is crucial for network management. Recently, Software-defined networking (SDN) has opened up new opportunities in network measurement and inference. In this work, we demonstrate an efficient flow measurement and inference framework which performs adaptive measurement with online learning. Using the reprogrammability of SDN, we assist network inference with online learning predictions and dynamically update the measurement rules network-wide to track and measure the most informative flows. To best utilize the available measurement resources, we leverage the SDN controller (with its global view) to optimally place flow monitoring rules across network switches. Using real-world data, we show that our measurement framework achieves high performance in both estimating the traffic matrix and identifying hierarchical heavy hitters.","PeriodicalId":348177,"journal":{"name":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2016.7562044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Accurate and efficient network-wide traffic measurement is crucial for network management. Recently, Software-defined networking (SDN) has opened up new opportunities in network measurement and inference. In this work, we demonstrate an efficient flow measurement and inference framework which performs adaptive measurement with online learning. Using the reprogrammability of SDN, we assist network inference with online learning predictions and dynamically update the measurement rules network-wide to track and measure the most informative flows. To best utilize the available measurement resources, we leverage the SDN controller (with its global view) to optimally place flow monitoring rules across network switches. Using real-world data, we show that our measurement framework achieves high performance in both estimating the traffic matrix and identifying hierarchical heavy hitters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OpenMeasure:基于SDN在线学习的自适应流量测量和推理
准确、高效的网络流量测量对网络管理至关重要。近年来,软件定义网络(SDN)为网络测量和推理提供了新的机遇。在这项工作中,我们展示了一个有效的流量测量和推理框架,该框架通过在线学习执行自适应测量。利用SDN的可重编程性,我们通过在线学习预测来协助网络推理,并动态更新网络范围内的测量规则,以跟踪和测量最多的信息流。为了最好地利用可用的测量资源,我们利用SDN控制器(及其全局视图)在网络交换机上最佳地放置流量监控规则。使用真实世界的数据,我们表明我们的测量框架在估计流量矩阵和识别分层重击者方面都达到了高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demonstration of TADA: A tool for automatic detection of AQM Revisiting AS-level graph reduction Implementation of secure 6LoWPAN communications for tactical wireless sensor networks Delay tolerant video upload from public vehicles Dynamic sketching over distributed data streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1