{"title":"Application of Data Augmentation for Accurate Attractiveness Estimation for Food Photography","authors":"Tatsumi Hattori, Keisuke Doman, I. Ide, Y. Mekada","doi":"10.1145/3326458.3326927","DOIUrl":null,"url":null,"abstract":"This research aims to develop a data augmentation framework in order to improve the attractiveness estimation accuracy for food photography. Machine learning-based methods require numerous food images accompanied with their attractiveness for learning the relationship between image features and the attractiveness. To efficiently obtain such food images, we apply data augmentation; the proposed method applies four kinds of image transformations: rotation, scaling, shifting, and random noise addition to the original images accompanied with their attractiveness. The key idea here is to apply the image transformations within a parameter space in which the attractiveness of the transformed image can be regarded as the same as that of the original one. By this way, we can obtain a large number of images accompanied with their attractiveness without any additional subjective experiments. Experimental results showed the effectiveness of the proposed method framework.","PeriodicalId":184771,"journal":{"name":"Proceedings of the 11th Workshop on Multimedia for Cooking and Eating Activities","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Workshop on Multimedia for Cooking and Eating Activities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326458.3326927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This research aims to develop a data augmentation framework in order to improve the attractiveness estimation accuracy for food photography. Machine learning-based methods require numerous food images accompanied with their attractiveness for learning the relationship between image features and the attractiveness. To efficiently obtain such food images, we apply data augmentation; the proposed method applies four kinds of image transformations: rotation, scaling, shifting, and random noise addition to the original images accompanied with their attractiveness. The key idea here is to apply the image transformations within a parameter space in which the attractiveness of the transformed image can be regarded as the same as that of the original one. By this way, we can obtain a large number of images accompanied with their attractiveness without any additional subjective experiments. Experimental results showed the effectiveness of the proposed method framework.