Evolutionary Multi-task Optimization Introducing Task Assignment Based on a Search Degree

Yohei Hazama, H. Iima
{"title":"Evolutionary Multi-task Optimization Introducing Task Assignment Based on a Search Degree","authors":"Yohei Hazama, H. Iima","doi":"10.1109/ICEET56468.2022.10007249","DOIUrl":null,"url":null,"abstract":"Multi-task optimization problems are to find solutions of multiple optimization problems simultaneously. Conventional evolutionary methods for the problems maintain a population for each task, and some offspring are generated by combining individuals in different tasks. The generated offspring are randomly assigned to tasks. However, the offspring may be assigned to inappropriate tasks. We propose a method that assigns them to appropriate tasks using a new criterion called search degree. The search degree represents how fast the solution search in each task progresses. The proposed method increases the probability of assigning the offspring to a task with a small search degree. Experimental results show the proposed method is superior.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-task optimization problems are to find solutions of multiple optimization problems simultaneously. Conventional evolutionary methods for the problems maintain a population for each task, and some offspring are generated by combining individuals in different tasks. The generated offspring are randomly assigned to tasks. However, the offspring may be assigned to inappropriate tasks. We propose a method that assigns them to appropriate tasks using a new criterion called search degree. The search degree represents how fast the solution search in each task progresses. The proposed method increases the probability of assigning the offspring to a task with a small search degree. Experimental results show the proposed method is superior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入基于搜索度的任务分配的进化多任务优化
多任务优化问题是指同时寻找多个优化问题的解。传统的问题进化方法为每个任务维持一个种群,并且一些后代是由不同任务中的个体组合产生的。生成的后代被随机分配到任务中。然而,后代可能被分配到不适当的任务。我们提出了一种方法,使用称为搜索度的新标准将它们分配到适当的任务。搜索度表示每个任务中解的搜索速度。该方法提高了将后代分配给小搜索度任务的概率。实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of IoT-based SMART Monitoring System for Hydro-Powered Generator Novel Scheme for Mutual Authentication to Isolate Sinkhole Attack in Wireless Sensor Networks A Stackelberg Game for Balancing Profits in IoT Ecosystem Efficient Electric Vehicle Charger Based on Wide Band-gap Materials for V2G and G2V. Image De-noising and Edge Segmentation using Bilateral Filtering and Gabor-cut for Edge Representation of a Breast Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1