Evaluating the performance of the Quantum Approximate Optimisation Algorithm to solve the Quadratic Assignment Problem

M. Khumalo, K. Prag, K. Nixon
{"title":"Evaluating the performance of the Quantum Approximate Optimisation Algorithm to solve the Quadratic Assignment Problem","authors":"M. Khumalo, K. Prag, K. Nixon","doi":"10.1109/ISCMI56532.2022.10068445","DOIUrl":null,"url":null,"abstract":"The performance of the Quantum Approximate Optimisation Algorithm (QAOA) in solving the Quadratic Assignment Problem (QAP) is evaluated, with the Variational Quantum Eigensolver (VQE) as a benchmark. The QAP is directly revelant to numerous industry scenarios. The QAP, a Combinatorial Optimisation Problem (COP), is classified as $\\mathcal{NP}$ -Hard. This classification means CPU time increases exponentially as the problem size scales when solving the QAP using deterministic optimisation techniques. Therefore, this work investigates the QAOA in search of a non-deterministic optimisation technique to efficiently obtain solutions to the QAP. This research compares two warm start techniques to solve QAP instances of sizes 3 to 7. The metrics of comparison - that measure efficiency and solution quality - were introduced in previous work on this topic. For the QAOA, the impact of the p-value, a determination of circuit depth, is investigated. Of the two quantum hybrid heuristics, the VQE retrieves solutions in a shorter computational time with a smaller circuit size, which allows for solving instances with a larger problem size. Compared to the VQE, the QAOA performs better in terms of feasibility as the problem size scales. The quantum warm start method results implies that the QAOA may not maintain higher solution quality for instances larger than size 4. Still, further investigation should be conducted once quantum devices with more qubits and higher quantum volumes are available.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"60 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of the Quantum Approximate Optimisation Algorithm (QAOA) in solving the Quadratic Assignment Problem (QAP) is evaluated, with the Variational Quantum Eigensolver (VQE) as a benchmark. The QAP is directly revelant to numerous industry scenarios. The QAP, a Combinatorial Optimisation Problem (COP), is classified as $\mathcal{NP}$ -Hard. This classification means CPU time increases exponentially as the problem size scales when solving the QAP using deterministic optimisation techniques. Therefore, this work investigates the QAOA in search of a non-deterministic optimisation technique to efficiently obtain solutions to the QAP. This research compares two warm start techniques to solve QAP instances of sizes 3 to 7. The metrics of comparison - that measure efficiency and solution quality - were introduced in previous work on this topic. For the QAOA, the impact of the p-value, a determination of circuit depth, is investigated. Of the two quantum hybrid heuristics, the VQE retrieves solutions in a shorter computational time with a smaller circuit size, which allows for solving instances with a larger problem size. Compared to the VQE, the QAOA performs better in terms of feasibility as the problem size scales. The quantum warm start method results implies that the QAOA may not maintain higher solution quality for instances larger than size 4. Still, further investigation should be conducted once quantum devices with more qubits and higher quantum volumes are available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评价量子近似优化算法求解二次分配问题的性能
以变分量子特征求解器(VQE)为基准,评价了量子近似优化算法(QAOA)在求解二次分配问题(QAP)中的性能。QAP与许多行业场景直接相关。QAP是一个组合优化问题(COP),被分类为$\mathcal{NP}$ -Hard。这种分类意味着在使用确定性优化技术解决QAP时,CPU时间随着问题规模的扩大呈指数增长。因此,本文研究了QAOA,以寻找一种非确定性优化技术来有效地获得QAP的解。本研究比较了两种热启动技术来解决大小为3到7的QAP实例。比较的度量标准——衡量效率和解决方案质量——在本主题的前面的工作中已经介绍过。对于QAOA,研究了决定电路深度的p值的影响。在这两种量子混合启发式方法中,VQE以更短的计算时间和更小的电路尺寸检索解决方案,这允许解决具有更大问题规模的实例。与VQE相比,随着问题规模的扩大,QAOA在可行性方面表现得更好。量子热启动方法的结果表明,对于尺寸大于4的实例,QAOA可能无法保持较高的解质量。然而,一旦拥有更多量子比特和更大量子体积的量子器件可用,就应该进行进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Gain-Ant Colony Algorithm for Green Vehicle Routing Problem Fake News Detection Using Deep Learning and Natural Language Processing Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation Modeling and Optimization of Two-Chamber Muffler by Genetic Algorithm A Novel Approach for Federated Learning with Non-IID Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1