Learning the human longitudinal control behavior with a modular hierarchical Bayesian Mixture-of-Behaviors model

M. Eilers, C. Möbus
{"title":"Learning the human longitudinal control behavior with a modular hierarchical Bayesian Mixture-of-Behaviors model","authors":"M. Eilers, C. Möbus","doi":"10.1109/IVS.2011.5940530","DOIUrl":null,"url":null,"abstract":"Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Modeling drivers' behavior is believed to be essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. These models are handcrafted in a top-down software engineering process. Here we propose a machine-learning alternative by estimating stochastic driver models from behavior traces. They are more robust than their non-stochastic predecessors. In this paper we present a Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) model for the longitudinal control of human drivers in an inner-city traffic scenario. It is learnt on the basis of multivariate time-series obtained in simulator studies. Percepts relevant for longitudinal control were included in the model by a structure-learning method using Bayesian information criteria. Besides mimicking human driver behavior we suggest using the model for prototyping intelligent assistance systems with human-like behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用模块化层次贝叶斯混合行为模型学习人的纵向控制行为
驾驶员行为建模被认为是误差补偿辅助系统快速原型设计的必要条件。许多作者提出了控制理论模型和生产系统模型。这些模型是在自顶向下的软件工程过程中手工制作的。在这里,我们提出了一种机器学习替代方案,通过从行为轨迹估计随机驾驶员模型。它们比它们的非随机前辈更健壮。在本文中,我们提出了一个用于城市交通场景中人类驾驶员纵向控制的贝叶斯自动驾驶驾驶员混合行为(BAD MoB)模型。它是在模拟器研究中得到的多变量时间序列的基础上学习的。通过使用贝叶斯信息标准的结构学习方法,将与纵向控制相关的感知包含在模型中。除了模仿人类驾驶员的行为,我们建议使用该模型原型智能辅助系统与人类的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent headlight control using learning-based approaches Piecewise affine state feedback controller for lane departure avoidance U-V-Disparity based Obstacle Detection with 3D Camera and steerable filter Invariant set based vehicle handling improvement at tire saturation using fuzzy output feedback Lane change intent prediction for driver assistance: On-road design and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1