{"title":"Efficient Parallel Graph Exploration on Multi-Core CPU and GPU","authors":"Sungpack Hong, Tayo Oguntebi, K. Olukotun","doi":"10.1109/PACT.2011.14","DOIUrl":null,"url":null,"abstract":"Graphs are a fundamental data representation that has been used extensively in various domains. In graph-based applications, a systematic exploration of the graph such as a breadth-first search (BFS) often serves as a key component in the processing of their massive data sets. In this paper, we present a new method for implementing the parallel BFS algorithm on multi-core CPUs which exploits a fundamental property of randomly shaped real-world graph instances. By utilizing memory bandwidth more efficiently, our method shows improved performance over the current state-of-the-art implementation and increases its advantage as the size of the graph increases. We then propose a hybrid method which, for each level of the BFS algorithm, dynamically chooses the best implementation from: a sequential execution, two different methods of multicore execution, and a GPU execution. Such a hybrid approach provides the best performance for each graph size while avoiding poor worst-case performance on high-diameter graphs. Finally, we study the effects of the underlying architecture on BFS performance by comparing multiple CPU and GPU systems, a high-end GPU system performed as well as a quad-socket high-end CPU system.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"290","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 290
Abstract
Graphs are a fundamental data representation that has been used extensively in various domains. In graph-based applications, a systematic exploration of the graph such as a breadth-first search (BFS) often serves as a key component in the processing of their massive data sets. In this paper, we present a new method for implementing the parallel BFS algorithm on multi-core CPUs which exploits a fundamental property of randomly shaped real-world graph instances. By utilizing memory bandwidth more efficiently, our method shows improved performance over the current state-of-the-art implementation and increases its advantage as the size of the graph increases. We then propose a hybrid method which, for each level of the BFS algorithm, dynamically chooses the best implementation from: a sequential execution, two different methods of multicore execution, and a GPU execution. Such a hybrid approach provides the best performance for each graph size while avoiding poor worst-case performance on high-diameter graphs. Finally, we study the effects of the underlying architecture on BFS performance by comparing multiple CPU and GPU systems, a high-end GPU system performed as well as a quad-socket high-end CPU system.