Non-Line-of-Sight Millimeter-Wave Radar 3-D Sparse Reconstruct via MSSTV Method

Xinyuan Liu, Shunjun Wei, Jinshan Wei, Jun Shi, Xiaoling Zhang, Yuanji Li
{"title":"Non-Line-of-Sight Millimeter-Wave Radar 3-D Sparse Reconstruct via MSSTV Method","authors":"Xinyuan Liu, Shunjun Wei, Jinshan Wei, Jun Shi, Xiaoling Zhang, Yuanji Li","doi":"10.1109/MAPE53743.2022.9935195","DOIUrl":null,"url":null,"abstract":"Non-line-of-sight (NLOS) imaging technique aims to reconstruct the hidden objects from multi-path echoes, which is a promising application in urban environment perception and autonomous driving. In this paper, we propose a total variation (TV) regularization based sparse reconstruct method for the hidden targets 3-D imaging in the seeing around corner situation for millimeter-wave (mmW) radar. Firstly, the 3-D imaging model of NLOS mmW radar is presented. Secondly, for preserving contour information, an effective imaging algorithm with compressed sensing theory and mirror projection, dubbed mirror symmetry sparse total variation (MSSTV) is proposed for 3-D image reconstruction. Finally, the MSSTV algorithm is validated by an NLOS 3-D imaging mmW experimental system with different kinds of targets.","PeriodicalId":442568,"journal":{"name":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPE53743.2022.9935195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-line-of-sight (NLOS) imaging technique aims to reconstruct the hidden objects from multi-path echoes, which is a promising application in urban environment perception and autonomous driving. In this paper, we propose a total variation (TV) regularization based sparse reconstruct method for the hidden targets 3-D imaging in the seeing around corner situation for millimeter-wave (mmW) radar. Firstly, the 3-D imaging model of NLOS mmW radar is presented. Secondly, for preserving contour information, an effective imaging algorithm with compressed sensing theory and mirror projection, dubbed mirror symmetry sparse total variation (MSSTV) is proposed for 3-D image reconstruction. Finally, the MSSTV algorithm is validated by an NLOS 3-D imaging mmW experimental system with different kinds of targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MSSTV方法的非视距毫米波雷达三维稀疏重建
非视距成像技术旨在从多径回波中重建隐藏目标,在城市环境感知和自动驾驶中具有广阔的应用前景。本文提出了一种基于全变分(TV)正则化的毫米波雷达隐身目标三维成像稀疏重构方法。首先,建立了NLOS毫米波雷达的三维成像模型。其次,为了保持轮廓信息,提出了一种有效的基于压缩感知理论和镜像投影的三维图像重构算法——镜像对称稀疏全变分算法(MSSTV)。最后,在不同目标的NLOS三维成像毫米波实验系统上对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EMI Reduction in Multilayer PCBs Using Planar Interdigital Slot Structures on the Reference Planes Spoof Surface Plasmon Polaritons-Fed Dual Polarized Patch Antenna Array A Design of Wideband Bandpass Three-Dimensional Frequency Selective Surface Research and Design of Broadband High Power Limiter A 24-44 GHz Highly Linear and Efficient mm-Wave Power Amplifier in 65-nm CMOS for 5G Phased Array Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1