Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time

Jason Li, Jesper Nederlof
{"title":"Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time","authors":"Jason Li, Jesper Nederlof","doi":"10.1145/3504027","DOIUrl":null,"url":null,"abstract":"In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O⋆ (f(k)), where the O⋆ notation omits factors polynomial in n. This race seemed to have reached a conclusion in 2011, when a randomized O⋆ (3k) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O⋆ (2.7k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3504027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O⋆ (f(k)), where the O⋆ notation omits factors polynomial in n. This race seemed to have reached a conclusion in 2011, when a randomized O⋆ (3k) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O⋆ (2.7k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在O -美女(2.7k)中检测大小为k的反馈顶点集
在反馈顶点集(FVS)问题中,给定一个无向图G和一个整数k,需要确定是否存在与G的所有循环相交的k个顶点的集合(即所谓的反馈顶点集)。反馈顶点集是参数化复杂性中最核心的问题之一:它是该领域许多重要算法技术的优秀测试平台,如迭代压缩[Guo等人(JCSS ' 06)],随机分支[Becker等人]。智能。Res ' 00)和Cut&Count [Cygan等(FOCS ' 11)]。特别是,对于O -百科(f(k))类型的运行时间中最小依赖f(k)的竞争一直很长,其中O -百科符号省略了n中的多项式因子。这场竞争似乎在2011年得出了结论,当时引入了基于Cut&Count的随机O -百科(3k)时间算法。在这项工作中,我们展示了相反的情况,并给出了O - (2.7k)时间随机化算法。我们的算法将所有提到的技术与实质性的新思想结合起来:首先,我们证明,给定一个大小为k的有界平均度的反馈顶点集,可以在多项式时间内找到宽度为(1-Ω (1))k的树分解。其次,我们给出了一个受[Becker等人]启发的随机分支策略。智能。(Res ' 00)]以降低到上述有界平均度设置。第三,我们通过使用快速矩阵乘法获得了显著的运行时间改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1