Deep Learning for People Detection on Beach Images

S. Chevtchenko, Rafaella F. Vale, F. Cordeiro, V. Macário
{"title":"Deep Learning for People Detection on Beach Images","authors":"S. Chevtchenko, Rafaella F. Vale, F. Cordeiro, V. Macário","doi":"10.1109/BRACIS.2018.00045","DOIUrl":null,"url":null,"abstract":"Convolutional architectures have in recent years become state-of-the-art for several object detection tasks. However, these detectors have not yet been evaluated for detection and monitoring of beach areas. As some of these areas need to be continually monitored for dangerous situations, such as shark attacks, an automated system would be an effective risk control measure. The most significant and specific challenges for this problem are variable scene illumination, partial occlusion and distant camera position. In this work we present a study on three recent convolutional architectures for the task of people detection in beach scenarios. Our dataset is composed of images taken in the Boa Viagem beach, in Brazil, and is used to evaluate Faster R-CNN, R-FCN and SSD in terms of quality and speed of detection. The detectors are pretrained on a dataset containing 91 classes of objects, including people with different levels of scale and occlusion. The results suggest that the Faster R-CNN meta-architecture with the Resnet 101 feature extractor generates significantly better detections in terms of F-measure, while performing at 5.6 fps on a GTX 1080 Ti GPU.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Convolutional architectures have in recent years become state-of-the-art for several object detection tasks. However, these detectors have not yet been evaluated for detection and monitoring of beach areas. As some of these areas need to be continually monitored for dangerous situations, such as shark attacks, an automated system would be an effective risk control measure. The most significant and specific challenges for this problem are variable scene illumination, partial occlusion and distant camera position. In this work we present a study on three recent convolutional architectures for the task of people detection in beach scenarios. Our dataset is composed of images taken in the Boa Viagem beach, in Brazil, and is used to evaluate Faster R-CNN, R-FCN and SSD in terms of quality and speed of detection. The detectors are pretrained on a dataset containing 91 classes of objects, including people with different levels of scale and occlusion. The results suggest that the Faster R-CNN meta-architecture with the Resnet 101 feature extractor generates significantly better detections in terms of F-measure, while performing at 5.6 fps on a GTX 1080 Ti GPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的海滩图像人物检测
卷积架构近年来已经成为一些目标检测任务的最先进的技术。然而,这些探测器在探测和监测海滩地区方面尚未得到评价。由于其中一些区域需要持续监测危险情况,例如鲨鱼袭击,自动化系统将是一种有效的风险控制措施。这个问题最重要和最具体的挑战是可变的场景照明,部分遮挡和远距离摄像机位置。在这项工作中,我们对海滩场景中人员检测任务的三种最新卷积架构进行了研究。我们的数据集由在巴西Boa Viagem海滩拍摄的图像组成,并用于评估Faster R-CNN, R-FCN和SSD在检测质量和速度方面的性能。检测器在包含91类对象的数据集上进行预训练,包括具有不同规模和遮挡水平的人。结果表明,更快的R-CNN元架构与Resnet 101特征提取器在F-measure方面产生了显着更好的检测,而在GTX 1080 Ti GPU上以5.6 fps的速度执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1