Statistical precision of information retrieval evaluation

G. Cormack, T. Lynam
{"title":"Statistical precision of information retrieval evaluation","authors":"G. Cormack, T. Lynam","doi":"10.1145/1148170.1148262","DOIUrl":null,"url":null,"abstract":"We introduce and validate bootstrap techniques to compute confidence intervals that quantify the effect of test-collection variability on average precision (AP) and mean average precision (MAP) IR effectiveness measures. We consider the test collection in IR evaluation to be a representative of a population of materially similar collections, whose documents are drawn from an infinite pool with similar characteristics. Our model accurately predicts the degree of concordance between system results on randomly selected halves of the TREC-6 ad hoc corpus. We advance a framework for statistical evaluation that uses the same general framework to model other sources of chance variation as a source of input for meta-analysis techniques.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

We introduce and validate bootstrap techniques to compute confidence intervals that quantify the effect of test-collection variability on average precision (AP) and mean average precision (MAP) IR effectiveness measures. We consider the test collection in IR evaluation to be a representative of a population of materially similar collections, whose documents are drawn from an infinite pool with similar characteristics. Our model accurately predicts the degree of concordance between system results on randomly selected halves of the TREC-6 ad hoc corpus. We advance a framework for statistical evaluation that uses the same general framework to model other sources of chance variation as a source of input for meta-analysis techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息检索评价的统计精度
我们引入并验证了自举技术来计算置信区间,以量化测试集可变性对平均精度(AP)和平均平均精度(MAP) IR有效性度量的影响。我们认为IR评估中的测试集合是材料相似集合的总体代表,这些集合的文档是从具有相似特征的无限池中提取的。我们的模型准确地预测了随机选择的TREC-6临时语料库中系统结果之间的一致性程度。我们提出了一个统计评估框架,该框架使用相同的一般框架来模拟其他机会变化来源,作为元分析技术的输入来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1