Research Article. On memory, dimension, and atmospheric teleconnections

T. O’Kane, D. Monselesan, J. Risbey, I. Horenko, C. Franzke
{"title":"Research Article. On memory, dimension, and atmospheric teleconnections","authors":"T. O’Kane, D. Monselesan, J. Risbey, I. Horenko, C. Franzke","doi":"10.1515/mcwf-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract Using reanalysed atmospheric data and applying a data-driven multiscale approximation to non-stationary dynamical processes, we undertake a systematic examination of the role of memory and dimensionality in defining the quasi-stationary states of the troposphere over the recent decades. We focus on the role of teleconnections characterised by either zonally-oriented wave trains or meridional dipolar structures. We consider the impact of various strategies for dimension reduction based on principal component analysis, diagonalization and truncation.We include the impact of memory by consideration of Bernoulli, Markovian and non-Markovian processes. We a priori explicitly separate barotropic and baroclinic processes and then implement a comprehensive sensitivity analysis to the number and type of retained modes. Our results show the importance of explicitly mitigating the deleterious impacts of signal degradation through ill-conditioning and under sampling in preference to simple strategies based on thresholds in terms of explained variance. In both hemispheres, the results obtained for the dominant tropospheric modes depend critically on the extent to which the higher order modes are retained, the number of free model parameters to be fitted, and whether memory effects are taken into account. Our study identifies the primary role of the circumglobal teleconnection pattern in both hemispheres for Bernoulli and Markov processes, and the transient nature and zonal structure of the Southern Hemisphere patterns in relation to their Northern Hemisphere counterparts. For both hemispheres, overfitted models yield structures consistent with the major teleconnection modes (NAO, PNA and SAM), which give way to zonally oriented wavetrains when either memory effects are ignored or where the dimension is reduced via diagonalising. Where baroclinic processes are emphasised, circumpolar wavetrains are manifest.","PeriodicalId":106200,"journal":{"name":"Mathematics of Climate and Weather Forecasting","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Climate and Weather Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcwf-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Using reanalysed atmospheric data and applying a data-driven multiscale approximation to non-stationary dynamical processes, we undertake a systematic examination of the role of memory and dimensionality in defining the quasi-stationary states of the troposphere over the recent decades. We focus on the role of teleconnections characterised by either zonally-oriented wave trains or meridional dipolar structures. We consider the impact of various strategies for dimension reduction based on principal component analysis, diagonalization and truncation.We include the impact of memory by consideration of Bernoulli, Markovian and non-Markovian processes. We a priori explicitly separate barotropic and baroclinic processes and then implement a comprehensive sensitivity analysis to the number and type of retained modes. Our results show the importance of explicitly mitigating the deleterious impacts of signal degradation through ill-conditioning and under sampling in preference to simple strategies based on thresholds in terms of explained variance. In both hemispheres, the results obtained for the dominant tropospheric modes depend critically on the extent to which the higher order modes are retained, the number of free model parameters to be fitted, and whether memory effects are taken into account. Our study identifies the primary role of the circumglobal teleconnection pattern in both hemispheres for Bernoulli and Markov processes, and the transient nature and zonal structure of the Southern Hemisphere patterns in relation to their Northern Hemisphere counterparts. For both hemispheres, overfitted models yield structures consistent with the major teleconnection modes (NAO, PNA and SAM), which give way to zonally oriented wavetrains when either memory effects are ignored or where the dimension is reduced via diagonalising. Where baroclinic processes are emphasised, circumpolar wavetrains are manifest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究文章。关于内存,尺寸和大气远程连接
利用重新分析的大气数据,并应用数据驱动的多尺度近似非平稳动力过程,我们对近几十年来对流层准平稳状态的记忆和维数定义进行了系统的研究。我们将重点放在以纬向波列或经向偶极结构为特征的远连接的作用上。我们考虑了基于主成分分析、对角化和截断的各种降维策略的影响。我们通过考虑伯努利、马尔可夫和非马尔可夫过程来包括记忆的影响。我们先验地明确分离正压过程和斜压过程,然后对保留模态的数量和类型进行全面的敏感性分析。我们的研究结果表明,明确减轻信号退化的有害影响的重要性,通过条件不良和采样不足,而不是基于解释方差的阈值的简单策略。在两个半球,对流层主要模态的结果主要取决于高阶模态保留的程度、拟合的自由模态参数的数量以及是否考虑了记忆效应。我们的研究确定了在两个半球的伯努利和马尔可夫过程中,环全球遥相关模式的主要作用,以及南半球模式相对于北半球的瞬态性质和纬向结构。对于两个半球,过拟合模型产生的结构与主要远相关模式(NAO、PNA和SAM)一致,当忽略记忆效应或通过对角化降低维度时,这些模式会让位于纬向取向的波束。当斜压过程被强调时,环极波束是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales On strongly nonlinear gravity waves in a vertically sheared atmosphere Shallow-cloud impact on climate and uncertainty: A simple stochastic model Pattern formation in clouds via Turing instabilities Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1