An Improved Extension of the D-S Evidence Theory to Fuzzy Sets

Y. Miao, X.P. Ma, H.X. Zhang, J.W. Zhang, Z. Zhao
{"title":"An Improved Extension of the D-S Evidence Theory to Fuzzy Sets","authors":"Y. Miao, X.P. Ma, H.X. Zhang, J.W. Zhang, Z. Zhao","doi":"10.1109/ICCGI.2008.44","DOIUrl":null,"url":null,"abstract":"To analyze fuzzy data in uncertain evidential reasoning, some researchers have recently extended the D-S evidence theory to fuzzy sets. But there are some insufficiencies in the definition of the fuzzy belief function and the combination rule on fuzzy sets of the D-S evidence theory. This paper describes a new definition of the similarity degree between two fuzzy sets and the improved extension combination rule of the evidence theory on fuzzy sets. It also presents the corresponding mathematical proof to validate the improved combination rule. Compared with other generalizing combination rules, the results of the numerical experiments show that the new combination rule in this paper can acquire more changing information to the change of fuzzy focal elements more effectively, and it overcomes the insufficiencies of other existing combination rules and enhances the robustness of fusion decision systems effectively.","PeriodicalId":367280,"journal":{"name":"2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2008.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To analyze fuzzy data in uncertain evidential reasoning, some researchers have recently extended the D-S evidence theory to fuzzy sets. But there are some insufficiencies in the definition of the fuzzy belief function and the combination rule on fuzzy sets of the D-S evidence theory. This paper describes a new definition of the similarity degree between two fuzzy sets and the improved extension combination rule of the evidence theory on fuzzy sets. It also presents the corresponding mathematical proof to validate the improved combination rule. Compared with other generalizing combination rules, the results of the numerical experiments show that the new combination rule in this paper can acquire more changing information to the change of fuzzy focal elements more effectively, and it overcomes the insufficiencies of other existing combination rules and enhances the robustness of fusion decision systems effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-S证据理论在模糊集上的改进推广
为了分析不确定证据推理中的模糊数据,最近一些研究者将D-S证据理论扩展到模糊集。但D-S证据理论在模糊信念函数的定义和模糊集的组合规则方面存在不足。本文给出了两个模糊集相似度的新定义和改进的模糊集证据理论的可拓组合规则。并给出了相应的数学证明来验证改进的组合规则。数值实验结果表明,与其他泛化组合规则相比,本文提出的组合规则能更有效地获取模糊焦点元变化时的更多变化信息,克服了现有组合规则的不足,有效地增强了融合决策系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge as a Service. An Online Scoring Engine Architecture Improved Minkowsky Metric for Image Region Partition Semi-autonomous Servers in Wireless Cellular Networks A Range Free Localization Algorithm Based on Restricted-Area for Wireless Sensor Networks Web Based Telematics Application for Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1