Improving ASR for Code-Switched Speech in Under-Resourced Languages Using Out-of-Domain Data

A. Biswas, E. V. D. Westhuizen, T. Niesler, F. D. Wet
{"title":"Improving ASR for Code-Switched Speech in Under-Resourced Languages Using Out-of-Domain Data","authors":"A. Biswas, E. V. D. Westhuizen, T. Niesler, F. D. Wet","doi":"10.21437/SLTU.2018-26","DOIUrl":null,"url":null,"abstract":"We explore the use of out-of-domain monolingual data for the improvement of automatic speech recognition (ASR) of code-switched speech. This is relevant because annotated code-switched speech data is both scarce and very hard to produce, especially when the languages concerned are under-resourced, while monolingual corpora are generally better-resourced. We perform experiments using a recently-introduced small five-language corpus of code-switched South African soap opera speech. We consider specifically whether ASR of English– isiZulu code-switched speech can be improved by incorporating monolingual data from unrelated but larger corpora. TDNN-BLSTM acoustic models are trained using various configura-tions of training data. The utility of artificially-generated bilingual English–isiZulu text to augment language model training data is also explored. We find that English-isiZulu speech recognition accuracy can be improved by incorporating mono-lingual out-of-domain data despite the differences between the soap-opera and monolingual speech.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We explore the use of out-of-domain monolingual data for the improvement of automatic speech recognition (ASR) of code-switched speech. This is relevant because annotated code-switched speech data is both scarce and very hard to produce, especially when the languages concerned are under-resourced, while monolingual corpora are generally better-resourced. We perform experiments using a recently-introduced small five-language corpus of code-switched South African soap opera speech. We consider specifically whether ASR of English– isiZulu code-switched speech can be improved by incorporating monolingual data from unrelated but larger corpora. TDNN-BLSTM acoustic models are trained using various configura-tions of training data. The utility of artificially-generated bilingual English–isiZulu text to augment language model training data is also explored. We find that English-isiZulu speech recognition accuracy can be improved by incorporating mono-lingual out-of-domain data despite the differences between the soap-opera and monolingual speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用域外数据提高资源不足语言中编码切换语音的自动识别能力
我们探索使用域外单语数据来改进编码切换语音的自动语音识别(ASR)。这是相关的,因为带注释的代码转换语音数据既稀少又很难产生,特别是当有关语言资源不足时,而单语语料库通常资源较好。我们使用一个最近引入的小型五语言语料库进行实验,该语料库由南非肥皂剧的语码转换而成。我们特别考虑是否可以通过合并来自不相关但更大语料库的单语数据来提高英语- isiZulu语码转换语音的ASR。TDNN-BLSTM声学模型使用各种配置的训练数据进行训练。本文还探讨了人工生成的双语英语- isizulu文本对语言模型训练数据的增强作用。我们发现,尽管肥皂剧和单语语音之间存在差异,但通过合并单语域外数据可以提高英语- isizulu语音识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1