An objective method to find better RBF networks in classification

H. Sug
{"title":"An objective method to find better RBF networks in classification","authors":"H. Sug","doi":"10.1109/ICCIT.2010.5711086","DOIUrl":null,"url":null,"abstract":"RBF networks are good at prediction tasks of data mining, and k-means clustering algorithm is one of the mostly used clustering algorithms for basis functions of RBF networks. K-means clustering algorithm needs the number of clusters for initialization, and depending on the number of clusters, the accuracy of RBF networks change. But we cannot resort to increasing the number of clusters in the RBF networks in sequential manner, because we have limited computing resources. This paper suggests an objective and systematic approach using decision tree in determining a proper number of clusters to find good RBF networks with respect to accuracy. Experiments with two different data sets showed very promising results.","PeriodicalId":131337,"journal":{"name":"5th International Conference on Computer Sciences and Convergence Information Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2010.5711086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

RBF networks are good at prediction tasks of data mining, and k-means clustering algorithm is one of the mostly used clustering algorithms for basis functions of RBF networks. K-means clustering algorithm needs the number of clusters for initialization, and depending on the number of clusters, the accuracy of RBF networks change. But we cannot resort to increasing the number of clusters in the RBF networks in sequential manner, because we have limited computing resources. This paper suggests an objective and systematic approach using decision tree in determining a proper number of clusters to find good RBF networks with respect to accuracy. Experiments with two different data sets showed very promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种寻找较好的RBF网络分类的客观方法
RBF网络擅长数据挖掘的预测任务,k-means聚类算法是RBF网络基函数最常用的聚类算法之一。K-means聚类算法需要初始化的聚类个数,随着聚类个数的增加,RBF网络的准确率会发生变化。但是我们不能采用顺序方式增加RBF网络中的集群数量,因为我们的计算资源有限。本文提出了一种客观、系统的方法,利用决策树来确定适当的聚类数量,以找到较好的RBF网络。用两个不同的数据集进行的实验显示了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality factors of business value and service level measurement for SOA Study on the inter-organizational tacit knowledge transfer network Network joining algorithm for mobile nodes in ubiquitous sensor networks Network security for virtual machine in cloud computing Action recognition using hybrid spatio-temporal bag-of-features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1