{"title":"A Stackelberg Game for Multi-Tenant RAN Slicing in 5G Networks","authors":"Zeina Awada, K. Khawam, S. Lahoud, M. Helou","doi":"10.1109/ISCC58397.2023.10218208","DOIUrl":null,"url":null,"abstract":"This paper addresses the multi-tenant radio access network slicing in 5G networks. The infrastructure provider (InP) slices the physical radio resources so as to meet differentiated service requirements, and the mobile virtual network operators (MVNOs) then dynamically request and lease isolated resources (from the slices) to their services. In this context, we propose a two-level single-leader multi-follower Stackelberg game to jointly solve the resource allocation and pricing problem. The InP prices its radio resources taking into account MVNO allocations, which in turn depend on the resource cost. Simulation results show that, in comparison with the Static Slicing approach, our solution achieves an efficient trade-off between MVNO satisfaction and InP revenue, while accounting for 5G service diversity and requirements.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the multi-tenant radio access network slicing in 5G networks. The infrastructure provider (InP) slices the physical radio resources so as to meet differentiated service requirements, and the mobile virtual network operators (MVNOs) then dynamically request and lease isolated resources (from the slices) to their services. In this context, we propose a two-level single-leader multi-follower Stackelberg game to jointly solve the resource allocation and pricing problem. The InP prices its radio resources taking into account MVNO allocations, which in turn depend on the resource cost. Simulation results show that, in comparison with the Static Slicing approach, our solution achieves an efficient trade-off between MVNO satisfaction and InP revenue, while accounting for 5G service diversity and requirements.