Filtering Nonlinear Feedback Shift Registers using Welch-Gong Transformations for Securing RFID Applications

K. Mandal, G. Gong
{"title":"Filtering Nonlinear Feedback Shift Registers using Welch-Gong Transformations for Securing RFID Applications","authors":"K. Mandal, G. Gong","doi":"10.4108/eai.8-12-2016.151726","DOIUrl":null,"url":null,"abstract":"Pseudorandom number generators play an important role to provide security and privacy on radio frequency identification (RFID) tags. In particular, the EPC Class 1 Generation 2 (EPC C1 Gen2) standard uses a pseudorandom number generator in the tag identification protocol. In this paper, we first present a pseudorandom number generator, named the filtering nonlinear feedback shift register using Welch-Gong (WG) transformations (filtering WG-NLFSR) and the filtering WG7-NLFSR for EPC C1 Gen2 RFID tags. We then investigate the periodicity of a sequence generated by the filtering WG-NLFSR by considering the model, named nonlinear feedback shift registers using Welch-Gong (WG) transformations (WG-NLFSR). The periodicity of WG-NLFSR sequences is investigated in two ways. Firstly, we perform the cycle decomposition of WG-NLFSR recurrence relations over different finite fields by computer simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a WG transformation module. Secondly, we conduct an empirical study on the period distribution of the sequences generated by the WG-NLFSR. The empirical study states that a sequence with period bounded below by the square root of the maximum period can be generated by the WG-NLFSR with high probability for any initial state.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.8-12-2016.151726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Pseudorandom number generators play an important role to provide security and privacy on radio frequency identification (RFID) tags. In particular, the EPC Class 1 Generation 2 (EPC C1 Gen2) standard uses a pseudorandom number generator in the tag identification protocol. In this paper, we first present a pseudorandom number generator, named the filtering nonlinear feedback shift register using Welch-Gong (WG) transformations (filtering WG-NLFSR) and the filtering WG7-NLFSR for EPC C1 Gen2 RFID tags. We then investigate the periodicity of a sequence generated by the filtering WG-NLFSR by considering the model, named nonlinear feedback shift registers using Welch-Gong (WG) transformations (WG-NLFSR). The periodicity of WG-NLFSR sequences is investigated in two ways. Firstly, we perform the cycle decomposition of WG-NLFSR recurrence relations over different finite fields by computer simulations where the nonlinear recurrence relation is composed of a characteristic polynomial and a WG transformation module. Secondly, we conduct an empirical study on the period distribution of the sequences generated by the WG-NLFSR. The empirical study states that a sequence with period bounded below by the square root of the maximum period can be generated by the WG-NLFSR with high probability for any initial state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Welch-Gong变换滤波非线性反馈移位寄存器以保护RFID应用
伪随机数生成器在射频识别(RFID)标签的安全性和保密性方面发挥着重要作用。特别是,EPC Class 1 Generation 2 (EPC C1 Gen2)标准在标签识别协议中使用了伪随机数生成器。在本文中,我们首先提出了一种伪随机数发生器,命名为滤波非线性反馈移位寄存器,使用Welch-Gong (WG)变换(滤波WG- nlfsr)和滤波WG7-NLFSR用于EPC C1 Gen2 RFID标签。然后,我们通过考虑使用Welch-Gong (WG)变换(WG- nlfsr)的非线性反馈移位寄存器模型(WG- nlfsr)来研究由滤波WG- nlfsr生成的序列的周期性。用两种方法研究了WG-NLFSR序列的周期性。首先,通过计算机模拟对不同有限域上的WG- nlfsr递归关系进行循环分解,其中非线性递归关系由特征多项式和WG变换模块组成。其次,我们对WG-NLFSR生成的序列周期分布进行了实证研究。实证研究表明,对于任何初始状态,WG-NLFSR都可以高概率地生成周期为最大周期平方根的序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1