Noise detection and cleaning by hypergraph model

A. Bretto, H. Cherifi
{"title":"Noise detection and cleaning by hypergraph model","authors":"A. Bretto, H. Cherifi","doi":"10.1109/ITCC.2000.844264","DOIUrl":null,"url":null,"abstract":"This paper introduces a new algorithm for visual reconstruction of digital images which have been corrupted by mixed noise. From an image hypergraph model we introduce a combinatorial definition of noisy data. A detection procedure is used to classify the hyperedges either as noisy or clean data. Similar to other techniques, the proposed algorithm uses then an estimation procedure to remove the effects of the noise from image data. Numerical simulations demonstrate that this algorithm suppress the effect of the noise while preserving the edges with a high degree of accuracy at a relatively low computational cost.","PeriodicalId":146581,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2000.844264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper introduces a new algorithm for visual reconstruction of digital images which have been corrupted by mixed noise. From an image hypergraph model we introduce a combinatorial definition of noisy data. A detection procedure is used to classify the hyperedges either as noisy or clean data. Similar to other techniques, the proposed algorithm uses then an estimation procedure to remove the effects of the noise from image data. Numerical simulations demonstrate that this algorithm suppress the effect of the noise while preserving the edges with a high degree of accuracy at a relatively low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超图模型的噪声检测与清除
介绍了一种新的混合噪声图像视觉重建算法。从图像超图模型出发,引入了噪声数据的组合定义。检测过程用于将超边缘分类为噪声数据或干净数据。与其他技术类似,该算法使用一个估计过程来去除图像数据中的噪声影响。数值模拟结果表明,该算法在抑制噪声影响的同时,以较低的计算成本保持了较高的边缘精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple collusion-secure fingerprinting schemes for images Object-relational database management system (ORDBMS) using frame model approach Dynamic adaptive forward error control framework for image transmission over lossy networks General-purpose processor Huffman encoding extension A robust parallel architecture for adaptive color quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1