Information content based ranking metric for linked open vocabularies

G. Atemezing, Raphael Troncy
{"title":"Information content based ranking metric for linked open vocabularies","authors":"G. Atemezing, Raphael Troncy","doi":"10.1145/2660517.2660533","DOIUrl":null,"url":null,"abstract":"It is widely accepted that by controlling metadata, it is easier to publish high quality data on the web. Metadata, in the context of Linked Data, refers to vocabularies and ontologies used for describing data. With more and more data published on the web, the need for reusing controlled taxonomies and vocabularies is becoming more and more a necessity. Catalogues of vocabularies are generally a starting point to search for vocabularies based on search terms. Some recent studies recommend that it is better to reuse terms from \"popular\" vocabularies [4]. However, there is not yet an agreement on what makes a popular vocabulary since it depends on diverse criteria such as the number of properties, the number of datasets using part or the whole vocabulary, etc. In this paper, we propose a method for ranking vocabularies based on an information content metric which combines three features: (i) the datasets using the vocabulary, (ii) the outlinks from the vocabulary and (iii) the inlinks to the vocabulary. We applied this method to 366 vocabularies described in the LOV catalogue. The results are then compared with other catalogues which provide alternative rankings.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660517.2660533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

It is widely accepted that by controlling metadata, it is easier to publish high quality data on the web. Metadata, in the context of Linked Data, refers to vocabularies and ontologies used for describing data. With more and more data published on the web, the need for reusing controlled taxonomies and vocabularies is becoming more and more a necessity. Catalogues of vocabularies are generally a starting point to search for vocabularies based on search terms. Some recent studies recommend that it is better to reuse terms from "popular" vocabularies [4]. However, there is not yet an agreement on what makes a popular vocabulary since it depends on diverse criteria such as the number of properties, the number of datasets using part or the whole vocabulary, etc. In this paper, we propose a method for ranking vocabularies based on an information content metric which combines three features: (i) the datasets using the vocabulary, (ii) the outlinks from the vocabulary and (iii) the inlinks to the vocabulary. We applied this method to 366 vocabularies described in the LOV catalogue. The results are then compared with other catalogues which provide alternative rankings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链接开放词汇表的基于信息内容的排名度量
人们普遍认为,通过控制元数据,可以更容易地在网络上发布高质量的数据。在关联数据的上下文中,元数据指的是用于描述数据的词汇表和本体。随着web上发布的数据越来越多,重用受控分类法和词汇表的需求变得越来越迫切。词汇表目录通常是基于搜索词搜索词汇表的起点。最近的一些研究建议,最好重用“流行”词汇中的术语[4]。然而,关于什么是流行词汇还没有达成一致,因为它取决于不同的标准,如属性的数量、使用部分或整个词汇表的数据集的数量等。在本文中,我们提出了一种基于信息内容度量的词汇表排名方法,该度量结合了三个特征:(i)使用词汇表的数据集,(ii)词汇表的外链和(iii)词汇表的链接。我们将这种方法应用于LOV目录中描述的366个词汇。然后将结果与提供替代排名的其他目录进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded Semantic Lexicon Induction with Joint Global and Local Optimization Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions Comparing Approaches for Automatic Question Identification Detecting Asymmetric Semantic Relations in Context: A Case-Study on Hypernymy Detection Deep Learning Models For Multiword Expression Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1