Inference and learning with hierarchical compositional models

Iasonas Kokkinos, A. Yuille
{"title":"Inference and learning with hierarchical compositional models","authors":"Iasonas Kokkinos, A. Yuille","doi":"10.1109/CVPRW.2009.5204336","DOIUrl":null,"url":null,"abstract":"Summary form only given: In this work we consider the problem of object parsing, namely detecting an object and its components by composing them from image observations. We build to address the computational complexity of the inference problem. For this we exploit our hierarchical object representation to efficiently compute a coarse solution to the problem, which we then use to guide search at a finer level. Starting from our adaptation of the A* parsing algorithm to the problem of object parsing, we then propose a coarse-to-fine approach that is capable of detecting multiple objects simultaneously. We extend this work to automatically learn a hierarchical model for a category from a set of training images for which only the bounding box is available. Our approach consists in (a) automatically registering a set of training images and constructing an object template (b) recovering object contours (c) finding object parts based on contour affinities and (d) discriminatively learning a parsing cost function.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary form only given: In this work we consider the problem of object parsing, namely detecting an object and its components by composing them from image observations. We build to address the computational complexity of the inference problem. For this we exploit our hierarchical object representation to efficiently compute a coarse solution to the problem, which we then use to guide search at a finer level. Starting from our adaptation of the A* parsing algorithm to the problem of object parsing, we then propose a coarse-to-fine approach that is capable of detecting multiple objects simultaneously. We extend this work to automatically learn a hierarchical model for a category from a set of training images for which only the bounding box is available. Our approach consists in (a) automatically registering a set of training images and constructing an object template (b) recovering object contours (c) finding object parts based on contour affinities and (d) discriminatively learning a parsing cost function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层组合模型的推理和学习
在这项工作中,我们考虑对象解析的问题,即通过从图像观察中组合它们来检测对象及其组成部分。我们构建来解决推理问题的计算复杂性。为此,我们利用我们的分层对象表示来有效地计算问题的粗略解,然后我们使用它来指导更精细的搜索。从我们将A*解析算法应用到对象解析问题开始,我们提出了一种能够同时检测多个对象的从粗到精的方法。我们将这项工作扩展到从一组只有边界框可用的训练图像中自动学习类别的分层模型。我们的方法包括(a)自动注册一组训练图像并构建对象模板(b)恢复对象轮廓(c)基于轮廓亲和力查找对象部分和(d)判别学习解析成本函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1