Shape priors and discrete MRFs for knowledge-based segmentation

A. Besbes, N. Komodakis, G. Langs, N. Paragios
{"title":"Shape priors and discrete MRFs for knowledge-based segmentation","authors":"A. Besbes, N. Komodakis, G. Langs, N. Paragios","doi":"10.1109/CVPR.2009.5206649","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new approach to knowledge-based segmentation. Our method consists of a novel representation to model shape variations as well as an efficient inference procedure to fit the model to new data. The considered shape model is similarity-invariant and refers to an incomplete graph that consists of intra and intercluster connections representing the inter-dependencies of control points. The clusters are determined according to the co-dependencies of the deformations of the control points within the training set. The connections between the components of a cluster represent the local structure while the connections between the clusters account for the global structure. The distributions of the normalized distances between the connected control points encode the prior model. During search, this model is used together with a discrete Markov random field (MRF) based segmentation, where the unknown variables are the positions of the control points in the image domain. To encode the image support, a Voronoi decomposition of the domain is considered and regional based statistics are used. The resulting model is computationally efficient, can encode complex statistical models of shape variations and benefits from the image support of the entire spatial domain.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

In this paper we introduce a new approach to knowledge-based segmentation. Our method consists of a novel representation to model shape variations as well as an efficient inference procedure to fit the model to new data. The considered shape model is similarity-invariant and refers to an incomplete graph that consists of intra and intercluster connections representing the inter-dependencies of control points. The clusters are determined according to the co-dependencies of the deformations of the control points within the training set. The connections between the components of a cluster represent the local structure while the connections between the clusters account for the global structure. The distributions of the normalized distances between the connected control points encode the prior model. During search, this model is used together with a discrete Markov random field (MRF) based segmentation, where the unknown variables are the positions of the control points in the image domain. To encode the image support, a Voronoi decomposition of the domain is considered and regional based statistics are used. The resulting model is computationally efficient, can encode complex statistical models of shape variations and benefits from the image support of the entire spatial domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识分割的形状先验和离散mrf
本文提出了一种新的基于知识的分割方法。我们的方法包括一种新的形状变化模型表示和一种有效的推理程序来拟合新的数据模型。所考虑的形状模型是相似不变的,它指的是由表示控制点相互依赖关系的簇内和簇间连接组成的不完全图。聚类是根据训练集中控制点变形的相互依赖性来确定的。集群组件之间的连接代表了局部结构,而集群之间的连接代表了全局结构。连接控制点之间归一化距离的分布对先验模型进行编码。在搜索过程中,该模型与基于离散马尔可夫随机场(MRF)的分割一起使用,其中未知变量是控制点在图像域中的位置。为了编码图像支持,考虑了域的Voronoi分解和基于区域的统计。该模型计算效率高,可以对形状变化的复杂统计模型进行编码,并受益于整个空间域的图像支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On bias correction for geometric parameter estimation in computer vision Learning multi-modal densities on Discriminative Temporal Interaction Manifold for group activity recognition Nonrigid shape recovery by Gaussian process regression Combining powerful local and global statistics for texture description Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1