On Meta-Bound for Lower Bounds of Bayes Risk

Shota Saito
{"title":"On Meta-Bound for Lower Bounds of Bayes Risk","authors":"Shota Saito","doi":"10.1109/ISIT50566.2022.9834810","DOIUrl":null,"url":null,"abstract":"For the problem of parameter estimation in a Bayesian setting, information-theoretic lower bounds of the Bayes risk have been investigated. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as the mutual information, Sibson’s α-mutual information, and Csiszár’s f-informativity. In this paper, we introduce an inequality called a \"meta-bound for lower bounds of the Bayes risk\" and show that the previous results can be derived from this bound.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the problem of parameter estimation in a Bayesian setting, information-theoretic lower bounds of the Bayes risk have been investigated. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as the mutual information, Sibson’s α-mutual information, and Csiszár’s f-informativity. In this paper, we introduce an inequality called a "meta-bound for lower bounds of the Bayes risk" and show that the previous results can be derived from this bound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于贝叶斯风险下界的元界
针对贝叶斯环境下的参数估计问题,研究了贝叶斯风险的信息下界。以往的研究以不同的方式证明了贝叶斯风险的下界,并通过互信息、Sibson α-互信息、Csiszár f-信息性等不同的量来表征下界。在本文中,我们引入了一个叫做“贝叶斯风险下界的元界”的不等式,并证明了前面的结果可以从这个界中推导出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1