Computational Modeling of the SARS-CoV-2 Main Protease Inhibition by the Covalent Binding of Prospective Drug Molecules

A. Nemukhin, B. Grigorenko, I. Polyakov, S. Lushchekina
{"title":"Computational Modeling of the SARS-CoV-2 Main Protease Inhibition by the Covalent Binding of Prospective Drug Molecules","authors":"A. Nemukhin, B. Grigorenko, I. Polyakov, S. Lushchekina","doi":"10.14529/jsfi200303","DOIUrl":null,"url":null,"abstract":"We illustrate modern modeling tools applied in the computational design of drugs acting as covalent inhibitors of enzymes. We take the Main protease (M pro ) from the SARS-CoV-2 virus as an important present-day representative. In this work, we construct a compound capable to block M pro , which is composed of fragments of antimalarial drugs and covalent inhibitors of cysteine proteases. To characterize the mechanism of its interaction with the enzyme, the algorithms based on force fields, including molecular mechanics (MM), molecular dynamics (MD) and molecular docking, as well as quantum-based approaches, including quantum chemistry and quantum mechanics/molecular mechanics (QM/MM) methods, should be applied. The use of supercomputers is indispensably important at least in the latter approach. Its application to enzymes assumes that energies and forces in the active sites are computed using methods of quantum chemistry, whereas the rest of protein matrix is described using conventional force fields. For the proposed compound, containing the benzoisothiazolone fragment and the substitute at the uracil ring, we show that it can form a stable covalently bound adduct with the target enzyme, and thus can be recommended for experimental trials.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi200303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We illustrate modern modeling tools applied in the computational design of drugs acting as covalent inhibitors of enzymes. We take the Main protease (M pro ) from the SARS-CoV-2 virus as an important present-day representative. In this work, we construct a compound capable to block M pro , which is composed of fragments of antimalarial drugs and covalent inhibitors of cysteine proteases. To characterize the mechanism of its interaction with the enzyme, the algorithms based on force fields, including molecular mechanics (MM), molecular dynamics (MD) and molecular docking, as well as quantum-based approaches, including quantum chemistry and quantum mechanics/molecular mechanics (QM/MM) methods, should be applied. The use of supercomputers is indispensably important at least in the latter approach. Its application to enzymes assumes that energies and forces in the active sites are computed using methods of quantum chemistry, whereas the rest of protein matrix is described using conventional force fields. For the proposed compound, containing the benzoisothiazolone fragment and the substitute at the uracil ring, we show that it can form a stable covalently bound adduct with the target enzyme, and thus can be recommended for experimental trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来药物分子共价结合抑制SARS-CoV-2主要蛋白酶的计算模型
我们说明现代建模工具应用于计算设计的药物作为共价抑制剂的酶。我们以SARS-CoV-2病毒的主蛋白酶(M pro)为当今的重要代表。在这项工作中,我们构建了一种能够阻断mpro的化合物,该化合物由抗疟疾药物片段和半胱氨酸蛋白酶的共价抑制剂组成。为了表征其与酶的相互作用机制,需要应用基于力场的分子力学(MM)、分子动力学(MD)和分子对接等算法,以及量子化学和量子力学/分子力学(QM/MM)方法等量子方法。超级计算机的使用是必不可少的,至少在后一种方法中是如此。它在酶中的应用假设使用量子化学方法计算活性位点的能量和力,而蛋白质基质的其余部分则使用常规力场来描述。我们发现,该化合物含有苯并异噻唑酮片段和尿嘧啶环上的替代物,可以与目标酶形成稳定的共价加合物,因此可以推荐用于实验试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1