Thermal effect analysis of brain tumor on simulated T1-weighted MRI images

Abdelmajid Bousselham, O. Bouattane, M. Youssfi, A. Raihani
{"title":"Thermal effect analysis of brain tumor on simulated T1-weighted MRI images","authors":"Abdelmajid Bousselham, O. Bouattane, M. Youssfi, A. Raihani","doi":"10.1109/ISACV.2018.8354083","DOIUrl":null,"url":null,"abstract":"This study analyzed the thermal effect of brain tumors on computer simulated MRI images. Magnetic Resonance Imaging (MRI) is an imaging technique that gives a large number of information on the observed tissues and tumors according to the nuclear magnetic resonance parameters. However, some of these parameters may vary depending on temperature. The temperature distribution is increased in the tumorous region compared to the surrounding normal tissues, which causes a significant change on MR parameters, the studied MR parameter in this work is spin lattice relaxation time T1. The problem is expressed mathematically and computer simulated T1-weighted images of realistic geometry of brain tissues containing a circular tumor are obtained using spin echo pulse sequence. The temperature distribution is calculated using Pennes bioheat transfer equation and implemented numerically by Finite Difference Method. Results show that heat generation by tumor has a significant impact on T1-weighted signal intensity.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study analyzed the thermal effect of brain tumors on computer simulated MRI images. Magnetic Resonance Imaging (MRI) is an imaging technique that gives a large number of information on the observed tissues and tumors according to the nuclear magnetic resonance parameters. However, some of these parameters may vary depending on temperature. The temperature distribution is increased in the tumorous region compared to the surrounding normal tissues, which causes a significant change on MR parameters, the studied MR parameter in this work is spin lattice relaxation time T1. The problem is expressed mathematically and computer simulated T1-weighted images of realistic geometry of brain tissues containing a circular tumor are obtained using spin echo pulse sequence. The temperature distribution is calculated using Pennes bioheat transfer equation and implemented numerically by Finite Difference Method. Results show that heat generation by tumor has a significant impact on T1-weighted signal intensity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟t1加权MRI图像对脑肿瘤的热效应分析
本研究分析了脑肿瘤对计算机模拟MRI图像的热效应。磁共振成像(MRI)是一种根据核磁共振参数给出被观察组织和肿瘤大量信息的成像技术。然而,其中一些参数可能会随着温度的变化而变化。与周围正常组织相比,肿瘤区域的温度分布增加,导致MR参数发生显著变化,本文研究的MR参数为自旋晶格弛豫时间T1。对该问题进行了数学表达,并利用自旋回波脉冲序列获得了含圆形肿瘤脑组织的真实几何形状的计算机模拟t1加权图像。采用Pennes生物传热方程计算温度分布,采用有限差分法进行数值模拟。结果表明,肿瘤发热对t1加权信号强度有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1