Li Zhao, Nathee Naktnasukanjn, Lei Mu, Haichuan Liu, Heping Pan
{"title":"Fundamental Quantitative Investment Theory and Technical System Based On Multi-Factor Models","authors":"Li Zhao, Nathee Naktnasukanjn, Lei Mu, Haichuan Liu, Heping Pan","doi":"10.1109/INDIN51773.2022.9976124","DOIUrl":null,"url":null,"abstract":"Along with the continuous development of capital markets and intelligent finance technologies, quantitative investment is entering into the most critical and challenging area – fundamental quantitative investment. So far, quantitative investment has been focused on automation of technical analysis and trading, while fundamental investment has been large discretionary. This paper provides an overview of quantitative investment and fundamental investment towards a fundamental quantitative investment theory and technical system based on multi-factor models. We start with reviewing relevant literature on modern financial quantitative investment and fundamental investment. Then we cover the theoretical basis and development of multi-factor models and their applications for stock selection, involving linear and non-linear relationships, machine learning, deep learning with neural networks, random forests, and Support Vector Machines (SVMs). We explore the frontiers of fundamental quantitative investment and shed light on the future research prospects.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Along with the continuous development of capital markets and intelligent finance technologies, quantitative investment is entering into the most critical and challenging area – fundamental quantitative investment. So far, quantitative investment has been focused on automation of technical analysis and trading, while fundamental investment has been large discretionary. This paper provides an overview of quantitative investment and fundamental investment towards a fundamental quantitative investment theory and technical system based on multi-factor models. We start with reviewing relevant literature on modern financial quantitative investment and fundamental investment. Then we cover the theoretical basis and development of multi-factor models and their applications for stock selection, involving linear and non-linear relationships, machine learning, deep learning with neural networks, random forests, and Support Vector Machines (SVMs). We explore the frontiers of fundamental quantitative investment and shed light on the future research prospects.