An Evaluation of Double Divide and Conquer on a Multi-core

T. Konda, H. Toyokawa, Y. Nakamura
{"title":"An Evaluation of Double Divide and Conquer on a Multi-core","authors":"T. Konda, H. Toyokawa, Y. Nakamura","doi":"10.1109/ICKS.2008.30","DOIUrl":null,"url":null,"abstract":"For bidiagonal SVD, double Divide and Conquer was proposed. It first computes singular values by a compact version of Divide and Conquer. The corresponding singular vectors are then computed by twisted factorization. The speed and accuracy of double Divide and Conquer are as good or even better than standard algorithms such as QR and the original Divide and Conquer. Moreover, it shows high scalability even on a PC cluster, distributed memory architecture. This paper presents an evaluation of parallel double Divide and Conquer for singular value decomposition on a multi-core architecture.","PeriodicalId":443068,"journal":{"name":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKS.2008.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For bidiagonal SVD, double Divide and Conquer was proposed. It first computes singular values by a compact version of Divide and Conquer. The corresponding singular vectors are then computed by twisted factorization. The speed and accuracy of double Divide and Conquer are as good or even better than standard algorithms such as QR and the original Divide and Conquer. Moreover, it shows high scalability even on a PC cluster, distributed memory architecture. This paper presents an evaluation of parallel double Divide and Conquer for singular value decomposition on a multi-core architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对多核双分治算法的评价
对于双对角奇异值分解,提出了双重分治算法。它首先通过一个精简版的分治法计算奇异值。然后通过扭曲分解计算相应的奇异向量。双重分治法的速度和准确性与QR和原始分治法等标准算法一样好,甚至更好。此外,即使在PC集群、分布式内存架构上,它也具有很高的可扩展性。提出了一种基于并行双分治法的多核奇异值分解算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Edaphology as a Basis for Field Informatics Researches Data Mining and Applied Linear Algebra Calendar for Everything: Browsing and Finding Cross-Media Personal Contents by Using Calendar Interface Virtual Reality Produced in the Brain Knowledge Exploratory in the Digitizing and Servicizing Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1