Exploitation of 3D Stereotactic Surface Projection for automated classification of Alzheimer's disease according to dementia levels

M. Ayhan, Ryan G. Benton, Vijay V. Raghavan, Suresh K. Choubey
{"title":"Exploitation of 3D Stereotactic Surface Projection for automated classification of Alzheimer's disease according to dementia levels","authors":"M. Ayhan, Ryan G. Benton, Vijay V. Raghavan, Suresh K. Choubey","doi":"10.1109/BIBM.2010.5706620","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is one major cause of dementia. Previous studies have indicated that the use of features derived from Positron Emission Tomography (PET) scans lead to more accurate and earlier diagnosis of AD, compared to the traditional approach used for determining dementia ratings, which uses a combination of clinical assessments such as memory tests. In this study, we compare Naïve Bayes (NB), a probabilistic learner, with variations of Support Vector Machines (SVMs), a geometric learner, for the automatic diagnosis of Alzheimer's disease. 3D Stereotactic Surface Projection (3D-SSP) is utilized to extract features from PET scans. At the most detailed level, the dimensionality of the feature space is very high, resulting in 15964 features. Since classifier performance can degrade in the presence of a high number of features, we evaluate the benefits of a correlation-based feature selection method to find a small number of highly relevant features.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Alzheimer's disease (AD) is one major cause of dementia. Previous studies have indicated that the use of features derived from Positron Emission Tomography (PET) scans lead to more accurate and earlier diagnosis of AD, compared to the traditional approach used for determining dementia ratings, which uses a combination of clinical assessments such as memory tests. In this study, we compare Naïve Bayes (NB), a probabilistic learner, with variations of Support Vector Machines (SVMs), a geometric learner, for the automatic diagnosis of Alzheimer's disease. 3D Stereotactic Surface Projection (3D-SSP) is utilized to extract features from PET scans. At the most detailed level, the dimensionality of the feature space is very high, resulting in 15964 features. Since classifier performance can degrade in the presence of a high number of features, we evaluate the benefits of a correlation-based feature selection method to find a small number of highly relevant features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维立体定向表面投影技术根据痴呆水平自动分类阿尔茨海默病
阿尔茨海默病(AD)是痴呆症的主要原因之一。先前的研究表明,与传统的确定痴呆等级的方法相比,使用正电子发射断层扫描(PET)扫描的特征可以更准确、更早地诊断AD,而传统的方法使用记忆测试等临床评估相结合。在这项研究中,我们比较了Naïve贝叶斯(NB),一种概率学习器,与支持向量机(svm),一种几何学习器的变体,用于阿尔茨海默病的自动诊断。利用三维立体定向表面投影(3D- ssp)从PET扫描中提取特征。在最详细的层面上,特征空间的维数非常高,产生15964个特征。由于存在大量特征时分类器性能会下降,因此我们评估了基于相关性的特征选择方法的好处,以找到少量高度相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1