{"title":"Portable Software Fault Isolation","authors":"Joshua A. Kroll, Gordon Stewart, A. Appel","doi":"10.1109/CSF.2014.10","DOIUrl":null,"url":null,"abstract":"We present a new technique for architecture portable software fault isolation (SFI), together with a prototype implementation in the Coq proof assistant. Unlike traditional SFI, which relies on analysis of assembly-level programs, we analyze and rewrite programs in a compiler intermediate language, the Cminor language of the Comp Cert C compiler. But like traditional SFI, the compiler remains outside of the trusted computing base. By composing our program transformer with the verified back-end of Comp Cert and leveraging Comp Cert's formally proved preservation of the behavior of safe programs, we can obtain binary modules that satisfy the SFI memory safety policy for any of Comp Cert's supported architectures (currently: Power PC, ARM, and x86-32). This allows the same SFI analysis to be used across multiple architectures, greatly simplifying the most difficult part of deploying trustworthy SFI systems.","PeriodicalId":285965,"journal":{"name":"2014 IEEE 27th Computer Security Foundations Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We present a new technique for architecture portable software fault isolation (SFI), together with a prototype implementation in the Coq proof assistant. Unlike traditional SFI, which relies on analysis of assembly-level programs, we analyze and rewrite programs in a compiler intermediate language, the Cminor language of the Comp Cert C compiler. But like traditional SFI, the compiler remains outside of the trusted computing base. By composing our program transformer with the verified back-end of Comp Cert and leveraging Comp Cert's formally proved preservation of the behavior of safe programs, we can obtain binary modules that satisfy the SFI memory safety policy for any of Comp Cert's supported architectures (currently: Power PC, ARM, and x86-32). This allows the same SFI analysis to be used across multiple architectures, greatly simplifying the most difficult part of deploying trustworthy SFI systems.