{"title":"Demand Side Management via prosumer interactions in a smart city energy marketplace","authors":"S. Karnouskos","doi":"10.1109/ISGTEurope.2011.6162818","DOIUrl":null,"url":null,"abstract":"Future smart cities are expected to be very large and complex ecosystems, where interactions among the various involved entities may lead to emergent behaviours (system of systems characteristic). Managing better the energy footprint is one of those challenging goals, and the smartgrid may provide a key tool in achieving that. We expect that smart city neighbourhoods will be more autonomous and able to manage more efficiently and dynamically their energy by taking into consideration local resources, prosumption and needs of their stakeholders. Additionally they will be able to interact with each-other and enable the smart city to dynamically take advantage of its optimal resource usage. We explore here directions that we follow in order to realize this view with the help of the smartgrid infrastructure, prosumer interactions, enterprise energy services and neighbourhood energy marketplaces.","PeriodicalId":419250,"journal":{"name":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2011.6162818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87
Abstract
Future smart cities are expected to be very large and complex ecosystems, where interactions among the various involved entities may lead to emergent behaviours (system of systems characteristic). Managing better the energy footprint is one of those challenging goals, and the smartgrid may provide a key tool in achieving that. We expect that smart city neighbourhoods will be more autonomous and able to manage more efficiently and dynamically their energy by taking into consideration local resources, prosumption and needs of their stakeholders. Additionally they will be able to interact with each-other and enable the smart city to dynamically take advantage of its optimal resource usage. We explore here directions that we follow in order to realize this view with the help of the smartgrid infrastructure, prosumer interactions, enterprise energy services and neighbourhood energy marketplaces.