Web usage prediction and recommendation using web session clustering

Vinh-Trung Luu, G. Forestier, Mathis Ripken, Frédéric Fondement, Pierre-Alain Muller
{"title":"Web usage prediction and recommendation using web session clustering","authors":"Vinh-Trung Luu, G. Forestier, Mathis Ripken, Frédéric Fondement, Pierre-Alain Muller","doi":"10.1109/ICDIM.2016.7829779","DOIUrl":null,"url":null,"abstract":"In recent years, a strong interest has been given to web usage prediction and recommendation methods to improve e-commerce, search engines and other online applications. There have been various efforts carried out in this field, particularly focused on using recordings of web user interactions with websites. In this context, our research focuses on developing a novel approach for web prediction and recommendation. The proposed method relies on hierarchical session clustering by sequence similarity measure and takes advantage of access activity time and access position in prediction session to make a recommendation. The performed experiments reveal that hierarchical parameter and prediction accuracy are relevant. In addition, the paper introduces cost estimation to adapt web visitor behavior to web business purposes using prediction ansd recommendation results.","PeriodicalId":146662,"journal":{"name":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eleventh International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2016.7829779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In recent years, a strong interest has been given to web usage prediction and recommendation methods to improve e-commerce, search engines and other online applications. There have been various efforts carried out in this field, particularly focused on using recordings of web user interactions with websites. In this context, our research focuses on developing a novel approach for web prediction and recommendation. The proposed method relies on hierarchical session clustering by sequence similarity measure and takes advantage of access activity time and access position in prediction session to make a recommendation. The performed experiments reveal that hierarchical parameter and prediction accuracy are relevant. In addition, the paper introduces cost estimation to adapt web visitor behavior to web business purposes using prediction ansd recommendation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Web会话聚类的Web使用预测和推荐
近年来,人们对网络使用预测和推荐方法产生了浓厚的兴趣,以改善电子商务、搜索引擎和其他在线应用程序。在这一领域进行了各种努力,特别侧重于使用网络用户与网站互动的记录。在此背景下,我们的研究重点是开发一种新的网络预测和推荐方法。该方法基于序列相似性度量的分层会话聚类,利用预测会话中的访问活动时间和访问位置进行推荐。实验结果表明,分层参数与预测精度是相关的。此外,本文还引入了成本估算,利用预测和推荐结果使访问者的行为适应网络商业目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The DEWI high-level architecture: Wireless sensor networks in industrial applications Wireless avionics intra-communications: Current trends and design issues Enabling OLAP analyses on the web of data Adding quality in the user requirements specification: A first approach Using rate equation for modeling triad dynamics on Instagram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1