Advances and Open Problems in Federated Learning

P. Kairouz, H. B. McMahan, Brendan Avent, A. Bellet, M. Bennis, A. Bhagoji, Keith Bonawitz, Zachary B. Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, S. Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, M. Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, T. Javidi, Gauri Joshi, M. Khodak, Jakub Konecný, A. Korolova, F. Koushanfar, Oluwasanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, R. Raskar, D. Song, Weikang Song, S. Stich, Ziteng Sun, A. Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
{"title":"Advances and Open Problems in Federated Learning","authors":"P. Kairouz, H. B. McMahan, Brendan Avent, A. Bellet, M. Bennis, A. Bhagoji, Keith Bonawitz, Zachary B. Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, S. Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, M. Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, T. Javidi, Gauri Joshi, M. Khodak, Jakub Konecný, A. Korolova, F. Koushanfar, Oluwasanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, R. Raskar, D. Song, Weikang Song, S. Stich, Ziteng Sun, A. Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao","doi":"10.1561/2200000083","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.","PeriodicalId":431372,"journal":{"name":"Found. Trends Mach. Learn.","volume":"1860 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3796","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2200000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3796

Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联邦学习的进展与开放性问题
联邦学习(FL)是一种机器学习设置,其中许多客户端(例如移动设备或整个组织)在中央服务器(例如服务提供商)的编排下协同训练模型,同时保持训练数据的分散。FL体现了集中数据收集和最小化的原则,可以减轻传统的集中式机器学习和数据科学方法带来的许多系统性隐私风险和成本。受FL研究爆炸式增长的推动,本文讨论了最近的进展,并提出了广泛的开放性问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor Regression Tutorial on Amortized Optimization Machine Learning for Automated Theorem Proving: Learning to Solve SAT and QSAT A unifying tutorial on Approximate Message Passing Reinforcement Learning, Bit by Bit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1