Data embedding in scalable coded video

LieLin Pang, Koksheik Wong, Sze‐Teng Liong
{"title":"Data embedding in scalable coded video","authors":"LieLin Pang, Koksheik Wong, Sze‐Teng Liong","doi":"10.1109/APSIPA.2017.8282210","DOIUrl":null,"url":null,"abstract":"In this paper, a self-cancelling method is proposed to embed data into multiple layers of a spatial scalable coded video. Correlation of prediction mode from multiple layers are analyzed and exploited to offset the distortion introduced at the base layer(BL) when embedding data at the enhancement layer (EL). Specifically, in the base layer, the prediction modes are divided into two groups, where one group encodes '0' while another encodes '1'. Data embedding in the enhancement layer is designed to compensate the errors introduced in the base layer. Experiment results show that the scalable coded video can effectively carry additional payload in multiple layers while maintaining the video quality and bit rate. In the best case scenario, when 104,141 bits are embedded into the BasketballDrive (BL: 1280 × 720 and EL: 1920 × 1080) video sequence, the bit rate is slightly increased while insignificant degradation in perceptual quality is observed.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a self-cancelling method is proposed to embed data into multiple layers of a spatial scalable coded video. Correlation of prediction mode from multiple layers are analyzed and exploited to offset the distortion introduced at the base layer(BL) when embedding data at the enhancement layer (EL). Specifically, in the base layer, the prediction modes are divided into two groups, where one group encodes '0' while another encodes '1'. Data embedding in the enhancement layer is designed to compensate the errors introduced in the base layer. Experiment results show that the scalable coded video can effectively carry additional payload in multiple layers while maintaining the video quality and bit rate. In the best case scenario, when 104,141 bits are embedded into the BasketballDrive (BL: 1280 × 720 and EL: 1920 × 1080) video sequence, the bit rate is slightly increased while insignificant degradation in perceptual quality is observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据嵌入可扩展编码视频
本文提出了一种自抵消方法,将数据嵌入到空间可伸缩编码视频的多层中。分析并利用多层预测模式的相关性来抵消在增强层嵌入数据时在基础层(BL)引入的失真。具体来说,在基础层中,将预测模式分为两组,一组编码“0”,另一组编码“1”。增强层中的数据嵌入是为了补偿基础层中引入的误差。实验结果表明,在保证视频质量和码率的前提下,该可扩展编码视频可以有效地在多层中携带额外的有效载荷。在最好的情况下,当104,141位嵌入到BasketballDrive (BL: 1280 × 720和EL: 1920 × 1080)视频序列中时,比特率略有增加,而感知质量没有明显下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Locomotion control of a serpentine crawling robot inspired by central pattern generators On the construction of more human-like chatbots: Affect and emotion analysis of movie dialogue data Pose-invariant kinematic features for action recognition CNN-based bottleneck feature for noise robust query-by-example spoken term detection Robust template matching using scale-adaptive deep convolutional features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1