Federated/Deep Learning in UAV Networks for Wildfire Surveillance

Ahmed El Hoffy, Seok-Chul Sean Kwon, H. Yeh
{"title":"Federated/Deep Learning in UAV Networks for Wildfire Surveillance","authors":"Ahmed El Hoffy, Seok-Chul Sean Kwon, H. Yeh","doi":"10.1109/WTS202356685.2023.10131685","DOIUrl":null,"url":null,"abstract":"The unmanned aerial vehicle network (UAV- net) has been attracting substantial attention as a solution of wildfire surveillance. Application of federated learning (FL) for the UAV-net can provide an applaudable solution to mitigate wildfires. Each UAV can hover at different locations and obtain images with distinctive features. Therefore, it is regarded as an efficient methodology that each UAV fulfills different levels of deep learning (DL) in a distributed and collaborative fashion, which is a new paradigm raised by FL. This paper examines current state-of-the-art research works on detecting wildfire utilizing DL and UAVs. Further, this paper proposes utilizing FL for the UAV-net to monitor and detect wildfire. The impact of different convolutional neural network (CNN) models and layers with tailored model parameters on the performance of prediction accuracy, is addressed with simulations.","PeriodicalId":405032,"journal":{"name":"2023 Wireless Telecommunications Symposium (WTS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Wireless Telecommunications Symposium (WTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WTS202356685.2023.10131685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unmanned aerial vehicle network (UAV- net) has been attracting substantial attention as a solution of wildfire surveillance. Application of federated learning (FL) for the UAV-net can provide an applaudable solution to mitigate wildfires. Each UAV can hover at different locations and obtain images with distinctive features. Therefore, it is regarded as an efficient methodology that each UAV fulfills different levels of deep learning (DL) in a distributed and collaborative fashion, which is a new paradigm raised by FL. This paper examines current state-of-the-art research works on detecting wildfire utilizing DL and UAVs. Further, this paper proposes utilizing FL for the UAV-net to monitor and detect wildfire. The impact of different convolutional neural network (CNN) models and layers with tailored model parameters on the performance of prediction accuracy, is addressed with simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于野火监测的无人机网络中的联邦/深度学习
无人机网络(UAV- net)作为野火监测的一种解决方案已经引起了人们的广泛关注。联邦学习(FL)在无人机网络中的应用可以为减轻野火提供一个值得称赞的解决方案。每架无人机可以在不同的位置悬停,获得具有不同特征的图像。因此,每架无人机以分布式和协作的方式实现不同层次的深度学习(DL)被认为是一种有效的方法,这是FL提出的一种新范式。本文研究了目前利用DL和无人机探测野火的最新研究工作。在此基础上,提出了利用FL对无人机网络进行野火监测和探测的方法。通过仿真研究了不同卷积神经网络(CNN)模型和具有定制模型参数的层对预测精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison of power allocation mechanisms for 5G D2D mobile communication networks Encryption-Aware PHY Security for Wiretap Channels with Multiple Independent Jammers Towards Generating True Random Numbers using Magnetoresistive RAM Welcome to WTS 2023 Methods of Automating Power Swapping Mechanisms for Extending UAV Flight Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1