A speech enhancement algorithm using computational auditory scene analysis with spectral subtraction

Cong Guo, Like Hui, Weiqiang Zhang, Jia Liu
{"title":"A speech enhancement algorithm using computational auditory scene analysis with spectral subtraction","authors":"Cong Guo, Like Hui, Weiqiang Zhang, Jia Liu","doi":"10.1109/ISSPIT.2016.7886000","DOIUrl":null,"url":null,"abstract":"Computational auditory scene analysis (CASA) system is well used in speech enhancement area in recent years. We propose a new system that combines CASA and spectral subtraction to get better enhanced speech. The CASA part consists of the latest method deep neural networks (DNNs). The original way to reconstruct the denoise signal is to use the estimated masks with direct overlap-add method ignoring the information of noise within the frames. In our system, we estimate self-adapted thresholds for each channel by Gaussian Mixture Model from the estimated ratio masks (ERMs) to separate noise and speech of each channel. In this way, we make full use of the information within frames. The results show increase in both objective and subjective evaluation.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Computational auditory scene analysis (CASA) system is well used in speech enhancement area in recent years. We propose a new system that combines CASA and spectral subtraction to get better enhanced speech. The CASA part consists of the latest method deep neural networks (DNNs). The original way to reconstruct the denoise signal is to use the estimated masks with direct overlap-add method ignoring the information of noise within the frames. In our system, we estimate self-adapted thresholds for each channel by Gaussian Mixture Model from the estimated ratio masks (ERMs) to separate noise and speech of each channel. In this way, we make full use of the information within frames. The results show increase in both objective and subjective evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于谱减法的计算听觉场景分析的语音增强算法
计算听觉场景分析(CASA)系统近年来在语音增强领域得到了很好的应用。我们提出了一种结合CASA和频谱减法的新系统,以获得更好的增强语音。CASA部分由最新方法深度神经网络(dnn)组成。原始的重建噪声信号的方法是利用直接叠加法估计的掩模,忽略帧内的噪声信息。在我们的系统中,我们使用高斯混合模型从估计的比率掩模(erm)中估计每个通道的自适应阈值,以分离每个通道的噪声和语音。这样,我们就充分利用了帧内的信息。结果表明,客观评价和主观评价均有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informed Split Gradient Non-negative Matrix factorization using Huber cost function for source apportionment An Identity and Access Management approach for SOA Extracting dispersion information from Optical Coherence Tomography images LOS millimeter-wave communication with quadrature spatial modulation An FPGA design for the Two-Band Fast Discrete Hartley Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1