Extendable MQTT Broker for Feedback-based Resource Management in Large-scale Computing Environments

Ryo Ouchi, Ryuichi Sakamoto
{"title":"Extendable MQTT Broker for Feedback-based Resource Management in Large-scale Computing Environments","authors":"Ryo Ouchi, Ryuichi Sakamoto","doi":"10.1145/3600061.3603129","DOIUrl":null,"url":null,"abstract":"High-performance computing (HPC) systems demand continuous monitoring to ensure efficient resource allocation and application performance. Recent studies indicate that real-time resource utilization monitoring can significantly improve the performance of dynamic scheduling algorithms. However, latency induced by protocol stack heavily impacts the effectiveness of dynamic scheduling. In this paper, we propose a novel monitoring system that implements the protocol stack on a Field-Programmable Gate Array (FPGA) and adopts a publish/subscribe (pub/sub) communication protocol. Specifically, by introducing an FPGA-based protocol stack, we substantially reduce the latency of protocol stack processing and enable the implementation of custom plugins at the L7 layer. Our experiments demonstrate that the proposed system effectively reduces protocol stack latency and, with the extensibility provided by user-defined plugins, offers great potential for a wide range of HPC monitoring and feedback applications.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3603129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance computing (HPC) systems demand continuous monitoring to ensure efficient resource allocation and application performance. Recent studies indicate that real-time resource utilization monitoring can significantly improve the performance of dynamic scheduling algorithms. However, latency induced by protocol stack heavily impacts the effectiveness of dynamic scheduling. In this paper, we propose a novel monitoring system that implements the protocol stack on a Field-Programmable Gate Array (FPGA) and adopts a publish/subscribe (pub/sub) communication protocol. Specifically, by introducing an FPGA-based protocol stack, we substantially reduce the latency of protocol stack processing and enable the implementation of custom plugins at the L7 layer. Our experiments demonstrate that the proposed system effectively reduces protocol stack latency and, with the extensibility provided by user-defined plugins, offers great potential for a wide range of HPC monitoring and feedback applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模计算环境中基于反馈的资源管理的可扩展MQTT代理
高性能计算(HPC)系统需要持续监控,以确保高效的资源分配和应用程序性能。近年来的研究表明,实时资源利用监控可以显著提高动态调度算法的性能。然而,协议栈导致的延迟严重影响了动态调度的有效性。本文提出了一种新的监控系统,该系统在FPGA上实现协议栈,采用发布/订阅(pub/sub)通信协议。具体来说,通过引入基于fpga的协议栈,我们大大减少了协议栈处理的延迟,并能够在L7层实现自定义插件。我们的实验表明,该系统有效地减少了协议栈延迟,并且通过用户定义插件提供的可扩展性,为广泛的HPC监控和反馈应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadline Enables In-Order Flowlet Switching for Load Balancing Online Detection of 1D and 2D Hierarchical Super-Spreaders in High-Speed Networks ABC: Adaptive Bitrate Algorithm Commander for Multi-Client Video Streaming Bamboo: Boosting Training Efficiency for Real-Time Video Streaming via Online Grouped Federated Transfer Learning Improving Cloud Storage Network Bandwidth Utilization of Scientific Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1