Robotic Interactive Physics Parameters Estimator (RIPPE)

Atabak Dehban, Carlos Cardoso, Pedro Vicente, A. Bernardino, J. Santos-Victor
{"title":"Robotic Interactive Physics Parameters Estimator (RIPPE)","authors":"Atabak Dehban, Carlos Cardoso, Pedro Vicente, A. Bernardino, J. Santos-Victor","doi":"10.1109/DEVLRN.2019.8850710","DOIUrl":null,"url":null,"abstract":"The ability to reason about natural laws of an environment directly contributes to successful performance in it. In this work, we present RIPPE, a framework that allows a robot to leverage existing physics simulators as its knowledge base for learning interactions with in-animate objects. To achieve this, the robot needs to initially interact with its surrounding environment and observe the effects of its behaviours. Relying on the simulator to efficiently solve the partial differential equations describing these physical interactions, the robot infers consistent physical parameters of its surroundings by repeating the same actions in simulation and evaluate how closely they match its real observations. The learning process is performed using Bayesian Optimisation techniques to sample efficiently the parameter space. We assess the utility of these inferred parameters by measuring how well they can explain physical interactions using previously unseen actions and tools.","PeriodicalId":318973,"journal":{"name":"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2019.8850710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ability to reason about natural laws of an environment directly contributes to successful performance in it. In this work, we present RIPPE, a framework that allows a robot to leverage existing physics simulators as its knowledge base for learning interactions with in-animate objects. To achieve this, the robot needs to initially interact with its surrounding environment and observe the effects of its behaviours. Relying on the simulator to efficiently solve the partial differential equations describing these physical interactions, the robot infers consistent physical parameters of its surroundings by repeating the same actions in simulation and evaluate how closely they match its real observations. The learning process is performed using Bayesian Optimisation techniques to sample efficiently the parameter space. We assess the utility of these inferred parameters by measuring how well they can explain physical interactions using previously unseen actions and tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人交互物理参数估计器(RIPPE)
对环境的自然规律进行推理的能力直接有助于在环境中取得成功。在这项工作中,我们提出了RIPPE,这是一个框架,允许机器人利用现有的物理模拟器作为其知识库来学习与动画对象的交互。为了实现这一点,机器人首先需要与周围环境进行交互,并观察其行为的影响。依靠模拟器有效地求解描述这些物理相互作用的偏微分方程,机器人通过在模拟中重复相同的动作来推断其周围环境的一致物理参数,并评估它们与实际观察结果的匹配程度。学习过程使用贝叶斯优化技术对参数空间进行有效采样。我们通过测量这些推断参数如何很好地解释使用以前看不见的动作和工具的物理相互作用来评估这些参数的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Training-ValueNet: Data Driven Label Noise Cleaning on Weakly-Supervised Web Images Learning to Parse Grounded Language using Reservoir Computing Identifying Reusable Early-Life Options New evidence for learning-based accounts of gaze following: Testing a robotic prediction Online Associative Multi-Stage Goal Babbling Toward Versatile Learning of Sensorimotor Skills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1