Advances of Machine Learning Approaches for Financial Decision Making and Time-Series Analysis: A Panel Discussion

Nino Antulov-Fantulin, Petter N. Kolm
{"title":"Advances of Machine Learning Approaches for Financial Decision Making and Time-Series Analysis: A Panel Discussion","authors":"Nino Antulov-Fantulin, Petter N. Kolm","doi":"10.3905/jfds.2023.1.123","DOIUrl":null,"url":null,"abstract":"Advances in machine learning (ML) are having profound influence on many fields. In this article, the authors present a curated version of a panel discussion that they moderated at Applied Machine Learning Days 2022 on the impact of recent advancements in ML on decision making, data-driven analysis, and time-series modeling in finance. The panel consisted of industry and academic panelists in the field of finance and ML: Robert Almgren, Matthew Dixon, Lisa Huang, Fabrizio Lillo, Mathieu Rosenbaum, and Nicholas Westray. In the discussions with the panelists, the authors focused on (1) the recent developments of deep learning such as transformer and physics-informed neural networks, (2) common misconceptions and challenges in applying ML in finance, and (3) opportunities and new research directions.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in machine learning (ML) are having profound influence on many fields. In this article, the authors present a curated version of a panel discussion that they moderated at Applied Machine Learning Days 2022 on the impact of recent advancements in ML on decision making, data-driven analysis, and time-series modeling in finance. The panel consisted of industry and academic panelists in the field of finance and ML: Robert Almgren, Matthew Dixon, Lisa Huang, Fabrizio Lillo, Mathieu Rosenbaum, and Nicholas Westray. In the discussions with the panelists, the authors focused on (1) the recent developments of deep learning such as transformer and physics-informed neural networks, (2) common misconceptions and challenges in applying ML in finance, and (3) opportunities and new research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习方法在金融决策和时间序列分析中的进展:小组讨论
机器学习(ML)的进步正在对许多领域产生深远的影响。在本文中,作者介绍了他们在2022年应用机器学习日主持的小组讨论的策划版本,讨论了机器学习的最新进展对金融决策、数据驱动分析和时间序列建模的影响。该小组由金融和ML领域的行业和学术小组成员组成:Robert Almgren, Matthew Dixon, Lisa Huang, Fabrizio Lillo, Mathieu Rosenbaum和Nicholas Westray。在与小组成员的讨论中,作者集中讨论了(1)深度学习的最新发展,如变压器和物理信息神经网络,(2)在金融中应用ML的常见误解和挑战,以及(3)机遇和新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1