A computer vision based framework for visual gun detection using SURF

R. Tiwari, G. Verma
{"title":"A computer vision based framework for visual gun detection using SURF","authors":"R. Tiwari, G. Verma","doi":"10.1109/EESCO.2015.7253863","DOIUrl":null,"url":null,"abstract":"Today's automatic visual surveillance is prime need for security and this paper presents first step in the direction of automatic visual gun detection. The objective of our paper is to develop a framework for visual gun detection for automatic surveillance. The proposed framework exploits the color based segmentation to eliminate unrelated object from an image using K-mean clustering algorithm. Speeded up robust features (SURF) interest point detector is used to locate the object (gun) in the segmented images. Our framework is robust enough in terms of scale, rotation, affine and occlusion. We have implemented and tested the system over sample images of gun, collected by us. We got promising performance of our system to detect a gun. Further, our system performs very well under different appearance of images. Thus our system is rotation, scale and shape invariant.","PeriodicalId":305584,"journal":{"name":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESCO.2015.7253863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Today's automatic visual surveillance is prime need for security and this paper presents first step in the direction of automatic visual gun detection. The objective of our paper is to develop a framework for visual gun detection for automatic surveillance. The proposed framework exploits the color based segmentation to eliminate unrelated object from an image using K-mean clustering algorithm. Speeded up robust features (SURF) interest point detector is used to locate the object (gun) in the segmented images. Our framework is robust enough in terms of scale, rotation, affine and occlusion. We have implemented and tested the system over sample images of gun, collected by us. We got promising performance of our system to detect a gun. Further, our system performs very well under different appearance of images. Thus our system is rotation, scale and shape invariant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算机视觉的SURF视觉炮检测框架
自动视觉监控是当今安防的首要需求,本文提出了自动视觉枪支检测方向的第一步。本文的目的是开发一个用于自动监视的视觉枪支检测框架。该框架利用k均值聚类算法,利用基于颜色的分割去除图像中不相关的目标。利用快速鲁棒特征(SURF)兴趣点检测器对分割图像中的目标(枪)进行定位。我们的框架在尺度、旋转、仿射和遮挡方面足够健壮。我们已经在我们收集的枪支样本图像上实现并测试了该系统。我们的系统在探测枪支方面有很好的表现。此外,我们的系统在不同的图像外观下表现良好。因此我们的系统是旋转、尺度和形状不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE copyright and consent form IEEE copyright and consent form Neuro-Genetic and CCM based biometrical authentication through side-view of human-face A feasibility analysis of decentralized solar power using RETScreen in Odisha Scanning tool for the detection of images embedded with malicious programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1