K-MEDOID PETAL-SHAPED CLUSTERING FOR THE CAPACITATED VEHICLE ROUTING PROBLEM

Jacoba H. Bührmann, F. Bruwer
{"title":"K-MEDOID PETAL-SHAPED CLUSTERING FOR THE CAPACITATED VEHICLE ROUTING PROBLEM","authors":"Jacoba H. Bührmann, F. Bruwer","doi":"10.7166/32-3-2610","DOIUrl":null,"url":null,"abstract":"In this research, k-medoid clustering is modelled and evaluated for the capacitated vehicle routing problem (CVRP). The k-medoid clustering method creates petal-shaped clusters, which could be an effective method to create routes in the CVRP. To determine routes from the clusters, an existing metaheuristic — the ruin and recreate (R&R) method — is applied to each generated cluster. The results are benchmarked to those of a well-known clustering method, k-means clustering. The performance of the methods is measured in terms of travel cost and distance travelled, which are well-known metrics for the CVRP. The results show that k-medoid clustering method outperforms the benchmark method for most instances of the test datasets, although the CVRP without any predefined clusters still provides solutions that are closer to optimal. Clustering remains a reliable distribution management tool and reduces the processing requirements of large-scale CVRPs.","PeriodicalId":404746,"journal":{"name":"The South African Journal of Industrial Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The South African Journal of Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7166/32-3-2610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, k-medoid clustering is modelled and evaluated for the capacitated vehicle routing problem (CVRP). The k-medoid clustering method creates petal-shaped clusters, which could be an effective method to create routes in the CVRP. To determine routes from the clusters, an existing metaheuristic — the ruin and recreate (R&R) method — is applied to each generated cluster. The results are benchmarked to those of a well-known clustering method, k-means clustering. The performance of the methods is measured in terms of travel cost and distance travelled, which are well-known metrics for the CVRP. The results show that k-medoid clustering method outperforms the benchmark method for most instances of the test datasets, although the CVRP without any predefined clusters still provides solutions that are closer to optimal. Clustering remains a reliable distribution management tool and reduces the processing requirements of large-scale CVRPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有能力车辆路径问题的k -中花瓣型聚类
本文对有能力车辆路径问题(CVRP)进行了k- medium聚类建模和评价。k-medoid聚类方法可以创建花瓣状的簇,是在CVRP中创建路由的一种有效方法。为了确定来自集群的路由,对每个生成的集群应用了现有的元启发式方法——破坏和重建(R&R)方法。结果与著名的聚类方法k-means聚类的结果进行了基准测试。这些方法的性能是根据旅行成本和旅行距离来衡量的,这是众所周知的CVRP指标。结果表明,对于大多数测试数据集实例,k- mediod聚类方法优于基准方法,尽管没有任何预定义聚类的CVRP仍然提供更接近最优的解决方案。集群仍然是一种可靠的分布管理工具,减少了大规模cvrp的处理需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
USE OF PARTIAL QUALITY FUNCTION DEPLOYMENT TO IDENTIFY PROCESSES REQUIRED FOR ISO 9001 ON THE PATH TO ARTIFICIAL INTELLIGENCE: THE EFFECTS OF A ROBOTICS SOLUTION IN A FINANCIAL SERVICES FIRM OPTIMISING THE ANALYSIS STAGE IN THE INTERNATIONALISATION OF MANUFACTURING OPERATIONS INVESTIGATION OF USER INTERFACE OF GYRO-SENSOR-BASED HAND GESTURAL DRONE CONTROLLER CELLULAR MANUFACTURING LAYOUT DESIGN USING HEURISTIC CLUSTERING ALGORITHM AND LPP MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1