Real-time Object Classification in Video Surveillance Based on Appearance Learning

Lun Zhang, S. Li, Xiao-Tong Yuan, Shiming Xiang
{"title":"Real-time Object Classification in Video Surveillance Based on Appearance Learning","authors":"Lun Zhang, S. Li, Xiao-Tong Yuan, Shiming Xiang","doi":"10.1109/CVPR.2007.383503","DOIUrl":null,"url":null,"abstract":"Classifying moving objects to semantically meaningful categories is important for automatic visual surveillance. However, this is a challenging problem due to the factors related to the limited object size, large intra-class variations of objects in a same class owing to different viewing angles and lighting, and real-time performance requirement in real-world applications. This paper describes an appearance-based method to achieve real-time and robust objects classification in diverse camera viewing angles. A new descriptor, i.e., the multi-block local binary pattern (MB-LBP), is proposed to capture the large-scale structures in object appearances. Based on MB-LBP features, an adaBoost algorithm is introduced to select a subset of discriminative features as well as construct the strong two-class classifier. To deal with the non-metric feature value of MB-LBP features, a multi-branch regression tree is developed as the weak classifiers of the boosting. Finally, the error correcting output code (ECOC) is introduced to achieve robust multi-class classification performance. Experimental results show that our approach can achieve real-time and robust object classification in diverse scenes.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

Classifying moving objects to semantically meaningful categories is important for automatic visual surveillance. However, this is a challenging problem due to the factors related to the limited object size, large intra-class variations of objects in a same class owing to different viewing angles and lighting, and real-time performance requirement in real-world applications. This paper describes an appearance-based method to achieve real-time and robust objects classification in diverse camera viewing angles. A new descriptor, i.e., the multi-block local binary pattern (MB-LBP), is proposed to capture the large-scale structures in object appearances. Based on MB-LBP features, an adaBoost algorithm is introduced to select a subset of discriminative features as well as construct the strong two-class classifier. To deal with the non-metric feature value of MB-LBP features, a multi-branch regression tree is developed as the weak classifiers of the boosting. Finally, the error correcting output code (ECOC) is introduced to achieve robust multi-class classification performance. Experimental results show that our approach can achieve real-time and robust object classification in diverse scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于外观学习的视频监控实时目标分类
对运动物体进行语义分类是自动视觉监控的重要内容。然而,这是一个具有挑战性的问题,因为与有限的对象尺寸有关的因素,由于不同的视角和照明,同一类中对象的类内变化很大,以及在实际应用中的实时性能要求。本文提出了一种基于外观的方法,在不同摄像机视角下实现实时、鲁棒的目标分类。提出了一种新的描述符,即多块局部二进制模式(MB-LBP),用于捕获物体外观中的大规模结构。基于MB-LBP特征,引入adaBoost算法选择判别特征子集,构造强两类分类器。为了处理MB-LBP特征的非度量特征值,提出了一种多分支回归树作为boosting的弱分类器。最后,引入纠错输出码(ECOC)来实现鲁棒的多类分类性能。实验结果表明,该方法可以在多种场景下实现实时、鲁棒的目标分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1