Performance improvement in image clustering using local discriminant model and global integration

N. Ahmed, A. Jalil, A. Khan
{"title":"Performance improvement in image clustering using local discriminant model and global integration","authors":"N. Ahmed, A. Jalil, A. Khan","doi":"10.1109/IBCAST.2012.6177530","DOIUrl":null,"url":null,"abstract":"In this study, novel image clustering algorithm is investigated to improve the clustering performance. We have investigated this model and have achieved improved clustering performance by fine tuning the related model parameters. Yi Yang (2010) proposed clustering algorithm namely local discriminant model and global integration (LDMGI). Clustering parameters are number of nearest neighbours (k) and regularization parameter (λ). The reported parameters are k = 5 and the optimal value of λ selected from set {10-8 - 108} with step size of 102. It is observed that LDMGI clustering performance can be improved with different combination of k and λ. But no criteria exist for the selection of optimal k and λ for best clustering performance. We developed Improved-LDMGI by fine tuning the optimal value of λ in small step size of 0.25 while keeping k = 5 for all image dataset except handwritten image dataset. Significant performance improvement, on average of 7.0 percent, is observed.","PeriodicalId":251584,"journal":{"name":"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2012.6177530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, novel image clustering algorithm is investigated to improve the clustering performance. We have investigated this model and have achieved improved clustering performance by fine tuning the related model parameters. Yi Yang (2010) proposed clustering algorithm namely local discriminant model and global integration (LDMGI). Clustering parameters are number of nearest neighbours (k) and regularization parameter (λ). The reported parameters are k = 5 and the optimal value of λ selected from set {10-8 - 108} with step size of 102. It is observed that LDMGI clustering performance can be improved with different combination of k and λ. But no criteria exist for the selection of optimal k and λ for best clustering performance. We developed Improved-LDMGI by fine tuning the optimal value of λ in small step size of 0.25 while keeping k = 5 for all image dataset except handwritten image dataset. Significant performance improvement, on average of 7.0 percent, is observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部判别模型和全局集成的图像聚类性能改进
为了提高聚类性能,本文研究了一种新的图像聚类算法。我们对该模型进行了研究,并通过微调相关模型参数提高了聚类性能。易阳(2010)提出了局部判别模型和全局集成(LDMGI)聚类算法。聚类参数是最近邻数(k)和正则化参数(λ)。报告的参数为k = 5, λ的最优值选自集{10-8 - 108},步长为102。观察到k和λ的不同组合可以提高LDMGI聚类性能。但是,对于最佳聚类性能的最优k和λ的选择不存在标准。我们对除手写图像数据集外的所有图像数据集,在保持k = 5的情况下,以小步长0.25微调λ的最优值,开发了Improved-LDMGI。可以观察到显著的性能改进,平均为7.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive control of a quadrotor with unknown model parameters INDOOR POSITIONING SYSTEM using ultrasonics Klopfenstein tapered 2–18 GHz microstrip balun Modeling of shallow water sea ambient noise using artificial neural network Parametric study of sweeping corrugated wing and role of spanwise flow in delayed stall
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1