LPC quantization requirements for the GPP-CELP coder

P. Mermelstein, Y. Qian, K. Zarrinkoub
{"title":"LPC quantization requirements for the GPP-CELP coder","authors":"P. Mermelstein, Y. Qian, K. Zarrinkoub","doi":"10.1109/SCFT.1999.781477","DOIUrl":null,"url":null,"abstract":"Code-excited linear prediction coding with generalized pitch prediction (GPP-CELP) requires linear prediction filtering of the stochastic codebook output prior to addition of the adaptive codebook (ACE) component. The ACE component represents a sequence of past reconstructed samples passed through a low-pass filter to reflect the reduced pitch periodicity of the higher speech frequencies. The spectrum of the residual manifests broad peaks leading to significantly narrower distributions in the LPC parameter space. Additionally, the quantization error of the residual may be masked by the significantly greater energy of the ACE component. This work compares the quantization requirements for the information required to represent the time-varying LPC filter of the GPP-CELP coder with that of the classical CELP coder. With non-predictive coding of the LPC information a bit-rate reduction from 20 bits/20 ms to 16 bits/20 ms appears feasible without introducing noticeable degradation due to quantization.","PeriodicalId":372569,"journal":{"name":"1999 IEEE Workshop on Speech Coding Proceedings. Model, Coders, and Error Criteria (Cat. No.99EX351)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Workshop on Speech Coding Proceedings. Model, Coders, and Error Criteria (Cat. No.99EX351)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCFT.1999.781477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Code-excited linear prediction coding with generalized pitch prediction (GPP-CELP) requires linear prediction filtering of the stochastic codebook output prior to addition of the adaptive codebook (ACE) component. The ACE component represents a sequence of past reconstructed samples passed through a low-pass filter to reflect the reduced pitch periodicity of the higher speech frequencies. The spectrum of the residual manifests broad peaks leading to significantly narrower distributions in the LPC parameter space. Additionally, the quantization error of the residual may be masked by the significantly greater energy of the ACE component. This work compares the quantization requirements for the information required to represent the time-varying LPC filter of the GPP-CELP coder with that of the classical CELP coder. With non-predictive coding of the LPC information a bit-rate reduction from 20 bits/20 ms to 16 bits/20 ms appears feasible without introducing noticeable degradation due to quantization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LPC量化要求的GPP-CELP编码器
基于广义基音预测的码激励线性预测编码(GPP-CELP)要求在加入自适应码本(ACE)分量之前对随机码本输出进行线性预测滤波。ACE分量表示经过低通滤波器的过去重构样本序列,以反映较高语音频率的降低音调周期性。残差谱表现为宽峰,导致LPC参数空间的分布明显变窄。此外,残差的量化误差可能被ACE分量的显著更大的能量所掩盖。本工作比较了GPP-CELP编码器的时变LPC滤波器与经典CELP编码器的时变LPC滤波器所需信息的量化要求。对于LPC信息的非预测编码,比特率从20比特/20毫秒降低到16比特/20毫秒似乎是可行的,而不会由于量化而引起明显的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reverse water-filling in predictive encoding of speech Integration of speech enhancement and coding techniques The use of LSF-based phonetic classification in low-rate coder design Post noise smoother to improve low bit rate speech-coding performance A novel pitch-lag search method using adaptive weighting and median filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1